[en] In the context of plant leaf roughness analysis for precision spraying, this study explores the capability and the performance of some combinations of pattern recognition and computer vision techniques to extract the roughness feature. The techniques merge feature extraction, linear and nonlinear dimensionality reduction techniques, and several kinds of methods of classification. The performance of the methods is evaluated and compared in terms of the error of classification. The results for the characterization of leaf roughness by generalized Fourier descriptors for feature extraction, kernel-based methods such as support vector machines for classification and kernel discriminant analysis for dimensionality reduction were encouraging. These results pave the way to a better understanding of the adhesion mechanisms of droplets on leaves that will help to reduce and improve the application of phytosanitary products and lead to possible modifications of sprayer configurations.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Journaux, L.
Simon, J.-C.
Destain, Marie-France ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Abe, S. (2005). Support vector machines for pattern classification. London: Springer-Verlag.
Backes, A. R., and Bruno, O. M. (2009). Plant leaf identification using multi-scale fractal dimensions. In P. Foggin, C. Sansome, and M. Vento (Eds.), Image analysis and processing-ICIAP (pp. 143-150). Berlin/Heidelberg: Springer.
Belkin, M., and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373-1396.
Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., and Moulines, E. (1997). A blind source separation technique using second order statistics. IEEE Transactions on Signal Processing, 45, 434-444.
Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.
Brodatz, P. (1966). Textures: A photographic album for artists and designers. New York: Dover Publications.
Camastra, F., and Vinciarelli, A. (2002). Estimating the intrinsic dimension of data with a fractal-based method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1404-1407.
Choi, H., and Choi, S. (2007). Robust kernel Isomap. Pattern Recognition, 40, 853-862.
Cointault, F., Guérin, D., Guillemin, J. P., and Chopinet, B. (2008). In-field wheat ears counting using color-texture image analysis. New Zealand Journal of Crop and Horticultural Science, 36, 117-130.
Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36, 287-314.
Demartines, P., and Hérault, J. (1997). Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on neural networks, 8, 148-154.
Deza, E., and Deza, M. (2006). Dictionary of distances. Amsterdam: Elsevier.
Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern classification (2nd ed.). New York: Wiley Interscience Publication.
Fodor, I. K. (2002). A survey of dimension reduction techniques. Lawrence Livermore National Laboratory technical report.
Forster, W. A., Zabkiewicz, J. A., and Kimberley, M. O. (2005). A universal spray droplet adhesion model. Transactions of the ASAE, 48, 1321-1330.
Friedman, J. H., and Tukey, J. W. (1974). A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on computers, C23, 881-890.
Gauthier, J.-P., Bornard, G., and Silbermann, M. (1991). Harmonic analysis on motion groups and their homogeneous spaces. IEEE Transactions on Systems, Man and Cybernetics, 21, 159-172.
Ham, J., Lee, D. D., Mika, S., and Schölkopf, B. (2004). A kernel view of the dimensionality reduction of manifolds. In C. E. Brodley (Ed.), Twenty first international conference on machine learning (pp. 369-376). Banff, Canada: ACM International Conference Proceeding Series.
Hijazi, B., Cointault, F., Yang, F., and Paindavoine, M. (2008). High-speed motion estimation of fertilizer granules with Gabor filters. In K. Harald and G. Martha Patricia Butron (Eds.), Proceedings of the 28th SPIE international congress on high-speed imaging and photonics (Vol. 7126), Canberra, Australia.
Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14, 55-63.
HyvÄarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10, 626-634.
Jain, A. K., and Tuceryan, M. (1993). Texture analysis. In C. H. Chen and P. S. P. Wang (Eds.), Handbook of pattern recognition and computer vision (pp. 235-276). Singapore: World Scientific.
Journaux, L., Foucherot, I., and Gouton, P. (2006). Reduction of the number of spectral bands in Landsat images: A comparison of linear and nonlinear methods. Optical Engineering, 45, 067002.
Kittler, J. (1978). Feature set search algorithms. In C. H. Chen (Ed.), Pattern Recognition and Signal Processing (pp. 41-60). Alphen aan den Rijn, Netherlands: Sijthoff and Noordhoff.
Kruskal, J. B. (1964). Non-metric multidimensional scaling: a numerical method. Psychometrika, 29, 115-129.
Lee, J. A., Lendasse, A., and Verleysen, M. (2004). Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing, 57, 49-76.
Lee, J. A., and Verleysen, M. (2007). Nonlinear dimensionality reduction. London: Springer.
Liang, Z., Zhang, D., and Shi, P. (2006). Robust kernel discriminant analysis and its application to feature extraction and recognition. Neurocomputing, 69, 928-933.
Miteran, J., Gorria, P., and Robert, M. (1994). Geometric classification by stress polytopes. Performances and integrations. Traitement du signal, 11, 393-407.
Niskanen, M., and Silven, O. (2003). Comparison of dimensionality reduction methods for wood surface inspection. In K. W. Tobin and F. Meriaudeau (Eds.), Proceeding of the 6th international conference on quality control by artificial vision (pp. 178-188). Tennessee, USA, SPIE: Gatlinburg.
Robert, P. C. (1999). Precision agriculture: research needs and status in the USA. In J. V. Stafford (Ed.), Precision agriculture '99. London, UK: SCI.
Roweis, S. T., and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323-2326.
Rumelhart, D. E., and McClelland, J. L. (1986). Parallel distributed processing. Cambridge, MA: MIT Press.
Sammon, J. W. (1969). A nonlinear mapping for data analysis. IEEE Transactions on Computers, C18, 401-409.
Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5, 197-227.
Schölkopf, B., Burges, J. C. C., and Smola, A. J. (1999). Advances in kernel methods-support vector learning. Cambridge, MA: MIT Press.
Schölkopf, B., Smola, A. J., and Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299-1319.
Shawe-Taylor, J., and Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge University Press.
Shepard, R. N. (1962). The analysis of proximities: Multidimensional scaling with an unknown distance function. Part 1. Psychometrika, 27, 125-140.
Short, N. M. Remote sensing tutorial. Retrieved April 14, 2010, from http://rst. gsfc. nasa. gov/Sect13/Sect13_9. html.
Smach, F., Lemaître, C., Gauthier, J.-P., Miteran, J., and Atri, M. (2007). Generalized Fourier descriptors with applications to objects recognition in SVM context. Journal of Mathematical Imaging and Vision, 30, 43-71.
Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319-2323.
Tzionas, P., Papadakis, S., and Manolakis, D. (2005). Plant leaves classification based on morphological features and a fuzzy surface selection technique. In D. Manolakis and A. Gogoussis (Eds.), 5th International Conference on Technology and Automation (pp. 365-370). Thessaloniki, Greece: IEEE Computer society.
Vapnik, V. (1998). Statistical learning theory. New York: Wiley Interscience Publication.
Villette, S., Cointault, F., Piron, E., Chopinet, B., and Paindavoine, M. (2008). Simple imaging system to measure velocity and improve the quality of fertilizer spreading in agriculture. Journal of Electronic imaging, 17, 1109-1119.
Witten, I. H., and Eibe, F. (2005). Data mining: Practical Machine learning tools and techniques (2nd ed.). Morgan Kaufmann series in data management systems. Morgan Kaufmann. San Francisco: Elsevier.
Wu, S. G., Bao, F. S., Xu, E. Y., Wang, Y. X., Chang, Y.-F., and Xiang, Q.-L. (2007). A leaf recognition algorithm for plant classification using probabilistic neural network. IEEE International Symposium on Signal Processing and Information Technology (pp. 11-16). Cairo, Egypt. Giza: IEEE Computer society.
Yun, Z., Yong, H., Kexin, X., Qingming, L., Da, X., Alexander, V. P., et al. (2006). Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS). Progress in biomedical optics and imaging, 7(2), 37.