[en] Polymer modification of carbon nanotubes is accomplished using a grafting-to approach. Radicals formed by the thermolysis of poly(2-vinylpyridine) terminated with a radical-stabilizing nitroxide can react with the surface of nanotubes, resulting in grafting densities up to 12 wt.-%. The modified nanotubes, which are easily dispersed in water, can immobilize metal nanoclusters on their surfaces.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Lou, Xudong; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Detrembleur, Christophe ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Pagnoulle, Christophe; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Jérôme, Robert ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Bocharova, Vera; Institut für Polymerforschung, Dresden, Germany
Kiriy, Anton; Institut für Polymerforschung, Dresden, Germany
Stamm, Manfred; Institut für Polymerforschung, Dresden, Germany
Language :
English
Title :
Surface modification of multiwalled carbon nanotubes by poly(2-vinylpyridine): Dispersion, selective deposition, and decoration of the nanotubes
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique F.R.S.-FNRS - Fonds de la Recherche Scientifique The "Région Wallonne" in the frame of the Nanotechnologies ENABLE program DFG - Deutsche Forschungsgemeinschaft
a) Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Eds: M. S. Dresselhaus, G. Dresselhaus, P. Avouris), Springer, New York 2001.
b) H. Dai, Acc. Chem. Res. 2002, 35, 1035.
a) A. Hirsch, Angew. Chem. Int. Ed. 2002, 41, 1853.
b) A. Star, D. Steuermann, J. R. Heath, J. F. Stoddard, Angew. Chem. Int. Ed. 2002, 41, 2508.
P. Petrov, F. Stassin, C. Pagnoulle, R. Jérôme, Chem. Commun. 2003, 2904.
a) S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, R. C. Haddon, Acc. Chem. Res. 2002, 35, 1105.
b) Y.-P. Sun, K. Fu, Y. Lin, W. Huang, Acc. Chem. Res. 2002, 35, 1096.
G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C. Y. Ryu, P. M. Ajayan, J. Am. Chem. Soc. 2003, 125, 9258.
a) Z. Yao, N. Braidy, G. A. Botton, A. Adronov, J. Am. Chem. Soc. 2003, 125, 16015.
b) S. Qin, D. Qin, W. T. Ford, D. E. Resasco, J. E. Herrera, J. Am. Chem. Soc. 2004, 126, 170.
c) H. Kong, C. Gao, D. Yan, J. Am. Chem. Soc. 2004, 126, 412.
S. Qin, D. Qin, W. T. Ford, D. E. Resasco, J. E. Herrera, Macromolecules 2004, 37, 752.
a) P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, Science 1997, 275, 1458.
b) S. Minko, S. Patil, V. Datsyuk, F. Simon, K.-J. Eichhorn, M. Motornov, D. Usov, I. Tokarev, M. Stamm, Langmuir, 2002, 18, 289.
a) S. Minko, A. Kiriy, G. Gorodyska, M. Stamm, J. Am. Chem. Soc. 2002, 124, 3218.
b) A. Kiriy, A. Gorodyska, S. Minko, W. Jaeger, P. Ště pánek, M. Stamm, J. Am. Chem. Soc. 2002, 124, 13454.
a) A. Kiriy, S. Minko, A. Gorodyska, M. Stamm, W. Jaeger, Nano Lett. 2002, 2, 881.
b) S. Minko, A. Kiriy, A. Gorodyska, M. Stamm, J. Am. Chem. Soc. 2002, 124, 10192.
I. Chalari, S. Pispas, N. Hadjichristidis, J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2889.
D. E. Hill, Y. Lin, A. M. Rao, L. F. Allard, Y.-P. Sun, Macromolecules 2002, 35, 9466.
A. Kiriy, A. Gorodyska, S. Minko, C. Tsitsilianis, W. Jaeger, M. Stamm, J. Am. Chem. Soc. 2003, 125, 11202.
a) J. J. J. M. Donners, R. Hoogenboom, A. P. H. J. Schenning, P. A. van Hal, R. J. M. Nolte, E. W. Meijer, N. A. J. M. Sommerdijk, Langmuir 2002, 18, 2571.
b) A. Fahmi, H. G. Braun, M. Stamm, Adv. Mater. 2003, 15, 1201.