Abstract :
[en] We introduce the Optimal Sample Selection (OSS) meta-algorithm for solving discrete-time Optimal Control problems. This meta-algorithm maps the problem of finding a near-optimal closed-loop policy to the identification of a small set of one-step system transitions, leading to high-quality policies when used as input of a batch-mode Reinforcement Learning (RL) algorithm. We detail a particular instance of this OSS metaalgorithm that uses tree-based Fitted Q-Iteration as a batch-mode RL algorithm and Cross Entropy search as a method for navigating efficiently in the space of sample sets. The results show that this particular instance of OSS algorithms is able to identify rapidly small sample sets leading to high-quality policies
Scopus citations®
without self-citations
6