[en] We study the structure of automata accepting the greedy representations of N in a wide class of numeration systems. We describe the conditions under which such automata can have more than one strongly connected component and the form of any such additional components. Our characterization applies, in particular, to any automaton arising from a Bertrand numeration system. Furthermore, we show that for any automaton A arising from a system with a dominant root beta>1, there is a morphism mapping A onto the automaton arising from the Bertrand system associated with the number beta. Under some mild assumptions, we also study the state complexity of the trim minimal automaton accepting the greedy representations of the multiples of m>1 for a wide class of linear numeration systems. As an example, the number of states of the trim minimal automaton accepting the greedy representations of mN in the Fibonacci system is exactly 2m^2.
Disciplines :
Computer science Mathematics
Author, co-author :
Charlier, Emilie ; Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Rampersad, Narad ; Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Rigo, Michel ; Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Waxweiler, Laurent ; Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
The minimal automaton recognizing mN in a linear numeration system
Publication date :
2011
Journal title :
Integers
eISSN :
1553-1732
Publisher :
Integers, Carrollton, United States - Georgia
Special issue title :
Proceedings of the Leiden Numeration Conference 2010