Abstract :
[en] Aim: The first objective of the present study was to compare the short- and long-term 3D volume stability of sub-sinusal bone regeneration in rabbits using different space fillers. The second objective was to assess qualitatively and quantitatively the early bone formation process and long-term behavior of the regenerated bone. Materials and methods: Fifteen rabbits underwent a double sinus lift procedure using: blood clot (Clot), autogenous bone chips (Auto) and bovine hydroxyapatite (BHA). Animals were euthanized at 1 week, 5 weeks and 6 months. Samples were subjected to X-ray microtomography and histology. Variations in the volume of bone augmentations were calculated at different time points. Qualitative analysis was performed using 7 μm sections and quantitative histomorphometric analyses were carried out using scanning electron microscopy. Results: From baseline (100%) to 5 weeks, the augmented volumes declined to 17.3% (Clot), 57.6% (Auto) and 90.6% (BHA). After 6 months, only 19.4% (Clot) and 31.4% (Auto) of initial volumes were found, while it remained more stable in the BHA group (84%). At 1 week, an initial osteogenesis process could be observed in the three groups along the bone walls. At 5 weeks, despite a significant decline in the volume, newly formed bone density was higher with Clot and Auto than with BHA. At 6 months, bone densities were statistically similar in the three groups. However, after 6 months, the surface invaded by newly formed bone (regenerated area) was significantly higher when BHA was used as space filler. In the BHA group, the biomaterial area slightly decreased from 42.7% (1 week) to 40% (5 weeks) and 34.9% (6 months) and the density of the composite regenerated tissue (bone+BHA) reached >50% at 6 months. Conclusions and clinical implications: The three space fillers allowed bone formation to occur. Nevertheless, augmented volumes declined in the Clot and Auto groups, while they remained stable with BHA. A slowly resorbable biomaterial might be suitable in sub-sinusal bone augmentation for preventing the re-expansion process and for augmenting the density of the regenerated tissues.
Scopus citations®
without self-citations
57