[en] Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997) and Brown et al. (1997) who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts) with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.
Disciplines :
Chemistry Agriculture & agronomy
Author, co-author :
Eeman, M.; Univ. Liege - Gembloux Agro-Bio-Tech, Department of Biological Industrial Chemistry, Passage des Déportés, 2, B-5030 Gembloux, Belgium
Deleu, Magali ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie des agro-biosystèmes
Language :
English
Title :
From biological membranes to biomimetic model membranes
Publication date :
2010
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Ahmed S.N., Brown D.A. & London E., 1997. On the origin of sphingolipid/cholesterol-rich detergentinsoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry, 36, 10944-10953.
Almeida P.F., Vaz W.L. & Thompson T.E., 1993. Percolation and diffusion in three-component lipid bilayers: effect of cholesterol on an equimolar mixture of two phosphatidylcholines. Biophys. J., 64, 399-412.
Anderson R.G.W. & Jacobson K., 2002. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science, 296, 1821-1825.
Anderson T.H. et al., 2009. Formation of supported bilayers on silica substrates. Langmuir, 25, 6997-7005.
Bagatolli L.A. & Gratton E., 1999. Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys. J., 77, 2090-2101.
Bagatolli L.A., Parasassi T. & Gratton E., 2000. Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods. A two photon fluorescence microscopy study. Chem. Phys. Lipids, 105, 135-147.
Brennan P.J., Griffin P.F.S., Losel D.M. & Tyrrell D., 1974. The lipids of fungi. Prog. Chem. Fats Other Lipids, 14, 49-89.
Bretscher M.S., 1973. Membrane structure: some general principles. Science, 181, 622-629.
Brockman H., 1999. Lipid monolayers: why use half a membrane to characterize protein-membrane interactions? Curr. Opin. Struct. Biol., 9, 438-443.
Brown D.A. & Rose J.K., 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell, 68, 533-544.
Brown D.A. & London E., 1997. Structure of detergentresistant membrane domains: does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun., 240, 1-7.
Brown D.A. & London E., 1998a. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol., 164, 103-114.
Brown D.A. & London E., 1998b. Function of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol., 14, 111-136.
Brown M.F. et al., 2002. Elastic deformation of membrane bilayers probed by deuterium NMR relaxation. J. Am. Chem. Soc., 124, 8471-8484.
Campbell S.M., Crowe S.M. & Mak J., 2001. Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J. Clin. Virol., 22, 217-227.
Chan Y.H.M. & Boxer S.G., 2007. Model membrane systems and their applications. Curr. Opin. Chem. Biol., 11, 581-587.
Crane J.M. & Tamm L.K., 2007. Fluorescence microscopy to study domains in supported lipid bilayers. Methods Mol. Biol., 400, 481-488.
Cullis P.R. & de Kruijff B., 1979. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta, 559, 399-420.
Danielli J.F. & Davson H., 1935. A contribution to the theory of permeability of thin films. J. Cell Comp. Physiol., 5, 495-508.
de Almeida R.F., Fedorov A. & Prieto M., 2003. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J., 85, 2406-2416.
de Vries A.H., Yefimov S., Mark A.E. & Marrink S.J., 2005. Molecular structure of the lecithin ripple phase. Proc. Natl Acad. Sci. USA, 102, 5392-5396.
Dufrêne Y.F., Barger W.R., Green J.-B. D. & Lee G.U., 1997. Nanometer-scale surface properties of mixed phospholipid monolayers and bilayers. Langmuir, 13, 4779-4784.
Duncan M.J., Shin J.S. & Abraham S.N., 2002. Microbial entry through caveolae: variations on a theme. Cell Microbiol., 4, 783-791.
El Maghraby G.M., Barry B.W. & Williams A.C., 2008. Liposomes and skin: from drug delivery to model membranes. Eur. J. Pharm. Sci., 34, 203-222.
Fantini J., Garmy N., Mahfoud R. & Yahi N., 2002. Lipid rafts: structure, function and role in HIV, Alzheimer's and prion diseases. Exp. Rev. Mol. Med., http://www.expertreviews.org/02005392h.htm, (20/12/02).
Filippov A., Orädd G. & Lindblom G., 2003. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. Biophys. J., 84, 3079-3086.
Friedrichson T. & Kurzchalia T.V., 1998. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature, 394, 802-805.
Gaines G.L.Jr., 1966. Insoluble monolayers at liquid-gas interfaces. New York, USA: Wiley.
Gally H.U., Seelig A. & Seelig J., 1976. Cholesterol-induced rod-like motion of fatty acyl chains in lipid bilayers: a deuterium magnetic resonance study. Hopp-Seyler's Z. Physiol. Chem., 357, 1447-1450.
Giocondi M.C. et al., 2000. In situ imaging of detergentresistant membranes by atomic force microscopy. J. Struct. Biol., 131, 38-43.
Goksu E.I. et al., 2009. AFM for structure and dynamics of biomembranes. Biochim. Biophys. Acta, 1788, 254-266.
Goñi F.M. et al., 2008. Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim. Biophys. Acta, 1781, 665-684.
Goodrich F.C., 1957. Molecular interaction in mixed monolayers. In: Schulman J.H., ed. Proceedings of the 2nd International Congress of Surface Activity. London: Butterworth.
Gorter E. & Grendel F., 1925. On bimolecular layers of lipoids on the chromocytes of the blood. J. Exp. Med., 41, 439-443.
Gregoriadis G., 1991. Overview of liposomes. J. Antimicrob. Chemother., 28, 39-48.
Gurtovenko A.A. & Vattulainen I., 2007. Lipid transmembrane asymmetry and intrinsic membrane potential: two sides of the same coin. J. Am. Chem. Soc., 129, 5358-5359.
Gurtovenko A.A. & Vattulainen I., 2008. Membrane potential and electrostatics of phospholipid bilayerswith asymmetric transmembrane distribution of anionic lipids. J. Phys. Chem. B, 112, 4629-4634.
Gurtovenko A.A. & Vattulainen I., 2009. Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution. J. Phys. Chem. B, 113, 7194-7198.
Harder T., Scheiffele P., Verkade P. & Simons K., 1998. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell. Biol., 141, 929-942.
Heimburg T., 2000. A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition. Biophys. J., 78, 1154-1165.
Heimburg T., 2007. Thermal biophysics of membranes. Weinheim, Germany: Wiley.
Helenius A. & Simons K., 1975. Solubilization of membranes by detergents. Biochim. Biophys. Acta, 415, 29-79.
Henriksen J. et al., 2006. Universal behaviour of membranes with sterols. Biophys. J., 90, 1639-1649.
Honerkamp-Smith A.R., Veatch S.L. & Keller S.L., 2009. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim. Biophys. Acta, 1788, 53-63.
Ipsen J.H. et al., 1987. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta, 905, 162-172.
Jacobson K. & Dietrich C., 1999. Looking at lipid rafts. Trends Cell Biol., 9, 87-91.
Janiak M.J., Small D.M. & Shipley G.G., 1979. Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J. Biol. Chem., 254, 6068-6078.
Jass J., Tjämhage T. & Puu G., 2000. From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: an atomic force microscopy study. Biophys. J., 79, 3153-3163.
Keller C.A. & Kasemo B., 1998. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J., 75, 1397-1402.
Lasic D.D., 1990. On the thermodynamic stability of liposomes. J. Colloid Interface Sci., 140, 302-304.
Lee C., Wacklin H. & Bain C.D., 2009. Changes in molecular composition and packing during lipid membrane reconstitution from phospholipid-surfactant micelles. Soft Matter, 5, 568-575.
Lichtenberg D., Robson R.J. & Dennis E.A., 1983. Solubilization of phospholipids by detergents: structural and kinetic aspects. Biochim. Biophys. Acta, 737, 285-304.
Lichtenberg D., Goñi F.M. & Heerklotz H., 2005. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci., 30, 430-436.
Lin W.C., Blanchette C.D., Ratto T.V. & Longo M.L., 2007. Lipid domains in supported lipid bilayer for atomic force microscopy. Methods Mol. Biol., 400, 503-513.
Loose M. & Schwille P., 2009. Biomimetic membrane systems to study cellular organization. J. Struct. Biol., 168, 143-151.
Lorin A., Flore C., Thomas A. & Brasseur R., 2004. Les liposomes: description, fabrication et applications. Biotechnol. Agron. Soc. Environ., 8, 163-176.
Madani H. & Kaler E.W., 1990. Aging and stability of vesicular dispersions. Langmuir, 6, 125-132.
Maget-Dana R., 1999. The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim. Biophys. Acta, 1462, 109-140.
Manes S., del Real G. & Martinez A.C., 2003. Pathogens: raft hijackers. Nat. Rev. Immunol., 3, 557-568.
Manno S., Takakuwa Y. & Mohandas N., 2002. Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine-skeletal protein interactions modulate membrane stability. Proc. Natl Acad. Sci. USA, 99, 1943-1948.
Marques E.F., 2000. Size and stability of catanionic vesicles: effects of formation path, sonication, and aging. Langmuir, 16, 4798-4807.
McConlongue C.W. & Vanderlick T.K., 1997. A close look at domain formation in DPPC monolayers. Langmuir, 13, 7158-7164.
McElhaney R.N. & Tourtellotte M.E., 1971. The relationship between fatty acid structure and the positional distribution of esterified fatty acids in phosphatidylglycerol from Mycoplasma laidlawii B. Biochim. Biophys. Acta, 202, 120-128.
McIntosh T.J., 1980. Difference in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. A molecular packing model. Biophys. J., 29, 237-246.
Milhiet P.E. et al., 2001. Domain formation in models of the renal brush border membrane outer leaflet. Biophys. J., 81, 547-555.
Miller C.E., Majewski J. & Kuhl T.L., 2006. Characterization of single biological membranes at the solid-liquid interface by X-ray reflectivity. Colloid Surf. A, 284-285, 434-439.
Mingeot-Leclercq M.-P., Deleu M., Brasseur R. & Dufrêne Y.F., 2008. Atomic force microscopy of supported lipid bilayers. Nat. Protoc., 3, 1654-1659.
Motschmann H. & Möhwald H., 2001. Langmuir-Blodgett films. In: Holmberg K., ed. Handbook of applied surface and colloid chemistry. New York, USA: Wiley-VCH.
Mui B., Chow L. & Hope M.J., 2003. Extrusion technique to generate liposomes of defined size. Methods Enzymol., 367, 3-14.
Muller P. & Herrmann A., 2002. Rapid transbilayer movement of spin-labeled steroids in human erythrocytes and in liposomes. Biophys. J., 82, 1418-1428.
Op den Kamp J.A.F., 1979. Lipid asymmetry in membranes. Annu. Rev. Biochem., 48, 47-71.
Peetla C., Stine A. & Labhasetwar V., 2009. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol. Pharmaceutics, 6, 1264-1276.
Pike L.J., 2003. Lipid rafts: bringing order to chaos. J. Lipid Res., 44, 655-667.
Puu G. & Gustafson I., 1997. Planar lipid bilayers on solid supports from liposomes - factors of importance for kinetics and stability. Biochim. Biophys. Acta, 1327, 149-161.
Radhakrishnan A., Anderson T.G. & McConnell H.M., 2000. Condensed complexes, rafts, and the chemical activity of cholesterol in membranes. Proc. Natl Acad. Sci. USA, 97, 12422-12427.
Ramstedt B. & Slotte J.P., 2002. Membrane properties of sphingomyelins. FEBS Lett., 531, 33-37.
Rappolt M., Laggner P. & Pabst G., 2004. Structure and elasticity of phospholipid bilayers in the Lα phase: a comparison of phosphatiylcholine and phosphatidylethanolamine membranes. Recent Res. Dev. Biophys., 3, 363-394.
Reviakine I. & Brisson A., 2000. Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir, 16, 1806-1815.
Richter R.P. & Brisson A.R., 2005. Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry. Biophys. J., 88, 3422-3433.
Rietveld A. & Simons K., 1998. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim. Biophys. Acta, 1376, 467-479.
Rock P. et al., 1990. Organization of glycosphingolipids in phosphatidylcholine bilayers: use of antibody molecules and Fab fragments as morphologic markers. Biochemistry, 29, 8484-8490.
Rodriguez N., Pincet F. & Cribier S., 2005. Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy. Colloid Surf. B, 42, 125-130.
Rossi C. & Chopineau J., 2007. Biomimetic tethered lipid membranes designed for membrane-protein interaction studies. Eur. Biophys. J., 36, 955-965.
Sankaram M.B. & Thompson T.E., 1990a. Interaction of cholesterol with various glycerophospholipides and sphingomyelin. Biochemistry, 29, 10670-10675.
Sankaram M.B. & Thompson T.E., 1990b. Modulation of phospholipid acyl chain order by cholesterol. A solidstatesolidstate 2H nuclear magnetic resonance study. Biochemistry, 29, 10676-10684.
Sankaram M.B. & Thompson T.E., 1991. Cholesterolinduced fluid-phase immiscibility in membranes. Proc. Natl Acad. Sci. USA, 88, 8686-8690.
Schroeder R., London E. & Brown D.A., 1994. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI-) anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl Acad. Sci. USA, 91, 12130-12134.
Schuck S. et al., 2003. Resistance of cell membranes to different detergents. Proc. Natl Acad. Sci. USA, 100, 5795-5800.
Sengupta P., Holowka D. & Baird B., 2007. Fluorescence resonance energy transfer between lipid probes detects nanoscopic heterogeneity in the plasma membrane of live cells. Biophys. J., 92, 3564-3574.
Shenoy-Scaria A.M. et al., 1994. Cysteine3 of Src family protein tyrosine kinases determines palmitoylation and localization in caveolae. J. Cell Biol., 126, 353-364.
Shogomori H. & Brown D.A., 2003. Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol. Chem., 384, 1259-1263.
Simons K. & Ikonen E., 1997. Functional rafts in cell membranes. Nature, 397, 569-572.
Simons K. & Toomre D., 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol., 1, 31-41.
Simons K. & Vaz W.L.C., 2004. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct., 33, 269-295.
Singer S.J. & Nicholson G.L., 1972. The fluid mosaic model of the structure of cell membranes. Science, 175, 720-731.
Steck T.L., Ye J. & Lange Y., 2002. Probing red cell membrane cholesterol movement with cyclodextrin. Biophys. J., 83, 2118-2125.
Subczynski W.K. & Kusumi A., 2003. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labelling and single molecule optical microscopy. Biochim. Biophys. Acta, 1610, 231-243.
Swamy M.J. et al., 2006. Coexisting domains in the plasma membrane of live cells characterized by spin-label ESR spectroscopy. Biophys. J., 90, 4452-4465.
Tamm L. & McConnell H., 1985. Supported phospholipids bilayers. Biophys. J., 47, 105-113.
Tanford C., 1980. The hydrophobic effect: formation of micelles and biological membranes. New York, USA: John Wiley & Sons.
Tardieu A., Luzzati V. & Reman F.C., 1973. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J. Mol. Biol., 75, 711-733.
Tiberg F., Harwigsson I. & Malmsten M., 2000. Formation of model lipid bilayers at the silica-water interface by coadsorption with non-ionic dodecyl maltoside surfactant. Eur. Biophys. J. Biophys. Lett., 29, 196-203.
Uhumwangho M.U. & Okor R.S., 2005. Current trends in the production and biomedical applications of liposomes: a review. J. Med. Biomed. Res., 4, 9-21.
Vacklin H.P., Tiberg F. & Thomas R.K., 2005. Formation of supported phospholipid bilayers via co-adsorption with β-D-dodecyl maltoside. Biochim. Biophys. Acta, 1668, 17-24.
Vacklin H.P. & Thomas R.K., 2007. Spontaneous formation of asymmetric lipid bilayers by adsorption of vesicles. Langmuir, 23, 7644-7651.
Van der Goot F.G. & Harder T., 2001. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin. Immunol., 13, 89-97.
van Meer G., 2005. Cellular lipidomics. EMBO J., 24, 3159-3165.
Veatch S.L., 2007. From small fluctuations to largescale phase separation: lateral organization in model membranes containing cholesterol. Semin. Cell Dev. Biol., 18, 573-582.
Veatch S.L., Soubias O., Keller S.L. & Gawrisch K., 2007. Critical fluctuations in domain-forming lipid mixtures. Proc. Natl Acad. Sci. USA, 104, 17650-17655.
Veatch S.L. et al., 2008. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol., 3, 287-293.
Vestergaard M., Hamada T. & Takagi M., 2008. Using model membranes for the study of amyloid beta:lipid interactions and neurotoxicity. Biotechnol. Bioeng., 99, 753-763.
Vist M.E. & Davis J.H., 1990. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry, 29, 451-464.
Voskuhl J. & Ravoo B.J., 2009. Molecular recognition of bilayer vesicles. Chem. Soc. Rev., 38, 495-505.
Wang T.Y., Leventis R. & Silvius J.R., 2000. Fluorescentbased evaluation of the partitioning of lipids and lapidated peptides into liquid-ordered lipid microdomaines: a model for molecular partitioning into lipid rafts. Biophys. J., 79, 919-933.
Wesolowska O., Michalak K., Maniewska J. & Hendrich A.B., 2009. Giant unilamellar vesicles: a perfect tool to visualize phase separation and lipid rafts in model systems. Acta Biochim. Pol., 56, 33-39.
Zimmerberg J. & Chernomordik L., 1999. Membrane fusion. Adv. Drug Delivery Rev., 38, 197-205.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.