Maldonado-Hódar F.J., Moreno-Castilla C., Carrasco-Marín F., and Pérez-Cadenas A.F. Reversible toluene adsorption on monolithic carbon aerogels. J Hazard Mater 148 3 (2007) 548-552
Carrasco-Marín F., Fairén-Jiménez D., and Moreno-Castilla C. Carbon aerogels from gallic acid-resorcinol mixtures as adsorbents of benzene, toluene and xylenes from dry and wet air under dynamic conditions. Carbon 47 2 (2009) 463-469
Tascón J.M.D. Overview of carbon materials in relation to adsorption. In: Bottani E.J., and Tascón J.M.D. (Eds). Adsorption by carbons (2008), Elsevier, Amsterdam 15-49
Maldonado-Hódar F.J., Moreno-Castilla C., Rivera-Utrilla J., and Ferro García M.A. Metal-carbon aerogels as catalysts and catalyst supports. Stud Surf Sci Catal (2000) 1007-1012
Smirnova A., Dong X., Hara H., Vasiliev A., and Sammes N. Novel carbon aerogel-supported catalysts for PEM fuel cell application. Int J Hydrogen Energy 30 2 (2005) 149-158
Gomes H.T., Samant P.V., Serp P., Kalck P., Figueiredo J.L., and Faria J.L. Carbon nanotubes and xerogels as supports of well-dispersed Pt catalysts for environmental applications. Appl Catal B 54 3 (2004) 175-182
Li W., Liang C., Qiu J., Zhou W., Han H., Wei Z., et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 40 5 (2002) 791-794
Maillard F., Simonov P.A., and Savinova E.R. Carbon materials as supports for fuel cells electrocatalysts. In: Serp P., and Figueiredo J.L. (Eds). Carbon materials for catalysis (2009), John Wiley & Sons, Inc., New York 429-481
Babel K., and Jurewicz K. KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption. Carbon 46 14 (2008) 1948-1956
Jordá-Beneyto M., Suárez-García F., Lozano-Castelló D., Cazorla-Amorós D., and Linares-Solano A. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45 2 (2007) 293-303
Schimmel H.G., Nijkamp G., Kearley G.J., Rivera A., de Jong K.P., and Mulder F.M. Hydrogen adsorption in carbon nanostructures compared. Mater Sci Eng B 108 1-2 (2004) 124-129
Marie J., Berthon-Fabry S., Chatenet M., Chainet E., Pirard R., Cornet N., et al. Platinum supported on resorcinol-formaldehyde based carbon aerogels for PEMFC electrodes: influence of the carbon support on electrocatalytic properties. J Appl Electrochem 37 1 (2007) 147-153
Guilminot E., Fischer F., Chatenet M., Rigacci A., Berthon-Fabry S., Achard P., et al. Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: electrochemical characterization. J Power Sour 166 1 (2007) 104-111
Guilminot E., Gavillon R., Chatenet M., Berthon-Fabry S., Rigacci A., and Budtova T. New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis. J Power Sour 185 2 (2008) 717-726
Job N., Maillard F., Marie J., Berthon-Fabry S., Pirard J.-P., and Chatenet M. Electrochemical characterization of Pt/carbon xerogel and Pt/carbon aerogel catalysts: first insights into the influence of the carbon texture on the Pt nanoparticle morphology and catalytic activity. J Mater Sci 44 24 (2009) 6591-6600
Marie J., Chenitz R., Chatenet M., Berthon-Fabry S., Cornet N., and Achard P. Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: experimental study of the mass-transport losses. J Power Sour 190 2 (2009) 423-434
Job N., Marie J., Lambert S., Berthon-Fabry S., and Achard P. Carbon xerogels as catalyst supports for PEM fuel cell cathode. Energy Convers Manage 49 9 (2008) 2461-2470
Béguin F., and Frackowiak E. Nanotextured carbons for electrochemical energy storage. In: Gogotsi Y. (Ed). Handbook of nanomaterials (2006), CRC Press, Philadelphia 713-737
Kinoshita K. Carbon. Electrochemical and physicochemical properties (1998), John Wiley & Sons, Inc., New York
Frackowiak E., and Béguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40 10 (2002) 1775-1787
Vix-Guterl C., Frackowiak E., Jurewicz K., Friebe M., Parmentier J., and Béguin F. Electrochemical energy storage in ordered porous carbon materials. Carbon 43 6 (2005) 1293-1302
Chmiola J., Yushin G., Dash R., and Gogotsi Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J Power Sour 158 1 (2006) 765-772
Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., and Taberna P.L. Anomalous increase in carbon capacitance at pore sizes less than 1 nm. Science 313 5794 (2006) 1760-1763
Swiatkowski A., Pakula M., Biniak S., and Walczyk M. Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(II) ions. Carbon 42 15 (2004) 3057-3069
Seredych M., Hulicova-Jurcakova D., Lu G.Q., and Bandosz T.J. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46 11 (2008) 1475-1488
Machnikowski J., Grzyb B., Machnikowska H., and Weber J.V. Surface chemistry of porous carbons from N-polymers and their blends with pitch. Micropor Mesopor Mater 82 1-2 (2005) 113-120
Lahaye J., Nansé G., Bagreev A., and Strelko V. Porous structure and surface chemistry of nitrogen containing carbons from polymers. Carbon 37 4 (1999) 585-590
Bradley R.H., Beamson G., Ling X., and Sutherland I. Surface nitrogen chemistry of PAN carbon fibres. Appl Surf Sci 72 3 (1993) 273-276
Lota G., Lota K., and Frackowiak E. Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochem Commun 9 7 (2007) 1828-1832
Jurewicz K., Babel K., Ziólkowski A., and Wachowska H. Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim Acta 48 11 (2003) 1491-1498
Jansen R.J.J., and van Bekkum H. Amination and ammoxidation of activated carbons. Carbon 32 8 (1994) 1507-1516
Starck J., Burg P., Muller S., Bimer J., Furdin G., Fioux P., et al. The influence of demineralisation and ammoxidation on the adsorption properties of an activated carbon prepared from a Polish lignite. Carbon 44 12 (2006) 2549-2557
Gorgulho H.F., Gonçalves F., Pereira M.F.R., and Figueiredo J.L. Synthesis and characterization of nitrogen-doped carbon xerogel. Carbon 47 8 (2009) 2032-2039
Peìrez-Cadenas M., Moreno-Castilla C., Carrasco-Marín F., and Peírez-Cadenas M. Surface chemistry, porous texture, and morphology of N-doped carbon xerogels. Langmuir 25 1 (2008) 466-470
Fischer F., Rigacci A., Pirard R., Berthon-Fabry S., and Achard P. Cellulose-based aerogels. Polymer 47 22 (2006) 7636-7645
Job N., Pirard R., Alié C., and Pirard J.P. Non intrusive mercury porosimetry: pyrolysis of resorcinol-formaldehyde xerogels. Part Part Syst Char 23 1 (2006) 72-81
Kapteijn F., Moulijn J.A., Matzner S., and Boehm H.P. The development of nitrogen functionality in model chars during gasification in CO2 and O2. Carbon 37 7 (1999) 1143-1150
László K., Tombácz E., and Josepovits K. Effect of activation on the surface chemistry of carbons from polymer precursors. Carbon 39 8 (2001) 1217-1228
Tamon H., Ishizaka H., Araki T., and Okazaki M. Control of mesoporous structure of organic and carbon aerogels. Carbon 36 9 (1998) 1257-1262
Mangun C.L., DeBarr J.A., and Economy J. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers. Carbon 39 11 (2001) 1689-1696
Bimer J., Salbut P.D., Berlozecki S., Boudou J.-P., Broniek E., and Siemieniewska T. Modified active carbons from precursors enriched with nitrogen functions: sulfur removal capabilities. Fuel 77 6 (1998) 519-525
Zawadzki J., and Wisniewski M. In situ characterization of interaction of ammonia with carbon surface in oxygen atmosphere. Carbon 41 12 (2003) 2257-2267
Zawadzki J. IR spectroscopy in carbon surface chemistry. In: Thrower P.A. (Ed). Chemistry and physics of carbon (1989), Marcel Dekker 149-380
Pels J.R., Kapteijn F., Moulijn J.A., Zhu Q., and Thomas K.M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33 11 (1995) 1641-1653
Ratner B.D., and Castner D.G. Electron spectroscopy for chemical analysis. In: Vickerman J.C. (Ed). Surface analysis: the principal techniques (1997), John Wiley & Sons, New York 43-98