Dissolved inorganic carbon dynamics and air-sea carbon dioxide fluxes during coccolithophorid blooms in the Northeast European continental margin (northern Bay of Biscay)
Suykens, Kim; Delille, Bruno; Chou, Leiet al.
2010 • ISOBAY XII International Symposium on Oceanography of the Bay of Biscay
[en] Balch et al. (2007) evaluated global pelagic contemporary calcification from remote sensing data (mainly associated to coccolithophores) to 1.6 ± 0.3 Pg PIC yr-1 (1 Pg = 1015 g; PIC = particulate inorganic carbon). This would imply that coccolithophores would be the most important pelagic calcifier in the oceans, since other estimates of contemporary global pelagic calcification range between 0.7 Pg PIC yr-1 based on accumulation rates and sediment trap data (Milliman et al. 1999), and 1.4 Pg PIC yr-1, based on the seasonal cycle of total alkalinity (TA) in the euphotic zone (Lee 2001). The development of coccolithophorid blooms affects the seawater carbonate chemistry, and air-sea CO2 fluxes, through the organic carbon pump and the carbonate counter-pump. The ratio between calcification (carbonate counter-pump), and organic carbon production (organic carbon pump), the C:P ratio, depends on the life cycle (bloom development), and growth conditions of coccolithophores. At the onset of the coccolithophorid bloom, when nutrients are available for growth, organic carbon production dominates over calcification (C:P << 1, the so-called organic phase). At the end of the bloom, in nutrient depleted conditions, and high irradiances (due to stronger stratification), organic carbon production decreases and calcification increases (C:P ≤ 1, the so-called inorganic phase). Several manipulative experiments to test the effect of ocean acidification on coccolithophores have shown that while calcification would decrease, the export of organic carbon would increase mainly through increasing transparent exopolymer particles (TEP) production. For a credible implementation in mathematical models of such feed-back mechanisms to allow the projection of a future evolution of carbon biogeochemistry under global change, it is required to understand present day biogeochemistry and ecology of naturally occurring pelagic calcifying communities. In particular, the overall effect of phytoplankton communities on the C:P ratio, and the net effect on carbonate chemistry, and related air-sea CO2 fluxes.
Suykens, Kim; Université de Liège, Unité d’Océanographie Chimique, Belgium
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Chou, Lei; Université Libre de Bruxelles, Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Belgium
De Bodt, Caroline; Université Libre de Bruxelles, Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Belgium
Harlay, Jérôme ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Schmidt, Sabine; Université Bordeaux 1, Environnements et Paléoenvironnements Océaniques, France
Borges, Alberto ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Language :
English
Title :
Dissolved inorganic carbon dynamics and air-sea carbon dioxide fluxes during coccolithophorid blooms in the Northeast European continental margin (northern Bay of Biscay)
Publication date :
03 May 2010
Event name :
ISOBAY XII International Symposium on Oceanography of the Bay of Biscay