Reference : Dissolved inorganic carbon dynamics and air-sea carbon dioxide fluxes during coccolit...
Scientific congresses and symposiums : Poster
Life sciences : Environmental sciences & ecology Life sciences : Aquatic sciences & oceanology
http://hdl.handle.net/2268/81234
Dissolved inorganic carbon dynamics and air-sea carbon dioxide fluxes during coccolithophorid blooms in the Northeast European continental margin (northern Bay of Biscay)
Delille, Bruno[Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique >]
Chou, Lei[Université Libre de Bruxelles, Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Belgium > > > >]
De Bodt, Caroline[Université Libre de Bruxelles, Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Belgium > > > >]
Harlay, Jérôme[Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique >]
Schmidt, Sabine[Université Bordeaux 1, Environnements et Paléoenvironnements Océaniques, France > > > >]
Borges, Alberto[Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique >]
3-May-2010
No
No
International
ISOBAY XII International Symposium on Oceanography of the Bay of Biscay
3-6 May 2010
http://www-iuem.univ-brest.fr/ISOBAY
Brest
France
[en] Balch et al. (2007) evaluated global pelagic contemporary calcification from remote sensing data (mainly associated to coccolithophores) to 1.6 ± 0.3 Pg PIC yr-1 (1 Pg = 1015 g; PIC = particulate inorganic carbon). This would imply that coccolithophores would be the most important pelagic calcifier in the oceans, since other estimates of contemporary global pelagic calcification range between 0.7 Pg PIC yr-1 based on accumulation rates and sediment trap data (Milliman et al. 1999), and 1.4 Pg PIC yr-1, based on the seasonal cycle of total alkalinity (TA) in the euphotic zone (Lee 2001). The development of coccolithophorid blooms affects the seawater carbonate chemistry, and air-sea CO2 fluxes, through the organic carbon pump and the carbonate counter-pump. The ratio between calcification (carbonate counter-pump), and organic carbon production (organic carbon pump), the C:P ratio, depends on the life cycle (bloom development), and growth conditions of coccolithophores. At the onset of the coccolithophorid bloom, when nutrients are available for growth, organic carbon production dominates over calcification (C:P << 1, the so-called organic phase). At the end of the bloom, in nutrient depleted conditions, and high irradiances (due to stronger stratification), organic carbon production decreases and calcification increases (C:P ≤ 1, the so-called inorganic phase). Several manipulative experiments to test the effect of ocean acidification on coccolithophores have shown that while calcification would decrease, the export of organic carbon would increase mainly through increasing transparent exopolymer particles (TEP) production. For a credible implementation in mathematical models of such feed-back mechanisms to allow the projection of a future evolution of carbon biogeochemistry under global change, it is required to understand present day biogeochemistry and ecology of naturally occurring pelagic calcifying communities. In particular, the overall effect of phytoplankton communities on the C:P ratio, and the net effect on carbonate chemistry, and related air-sea CO2 fluxes.