Abstract :
[en] Cytokinins are involved in many aspects of plant growth and development and physiological evidence also indicates that they have a role in floral transition. In order to integrate these phytohormones into the current knowledge of genetically defined molecular pathways to flowering, we performed exogenous treatments of adult wild-type and mutant Arabidopsis plants and analysed the expression of candidate genes. We used a hydroponic system that enables synchronous growth and flowering of Arabidopsis and allows precise application of chemicals to the roots for defined periods of time. We show that application of N6-benzylaminopurine (BAP) promotes flowering of plants grown in non-inductive short days. The response to cytokinin treatment does not require FLOWERING LOCUS T (FT) but activates its paralogue TWIN SISTER OF FT (TSF), as well as FD, which encodes a partner protein of TSF, and the downstream gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). Treatment of selected mutants confirmed that TSF and SOC1 are necessary for the flowering response to BAP while the activation cascade might partially act independently of FD. These experiments provide a mechanistic basis for the role of cytokinins in flowering and demonstrate that the redundant genes FT and TSF are differently regulated by distinct floral inducing signals.
Scopus citations®
without self-citations
169