[en] The distribution of transparent exopolymer particles (TEP) was investigated during a coccolithophorid bloom in the northern Bay of Biscay (North Atlantic Ocean) in early June 2006. MODIS chlorophyll-a (Chl-a) and reflectance images before and during the cruise were used to localize areas of important biological activity and high reflectance (HR). TEP profiles along the continental margin, determined using microscopic (TEPmicro) and colorimetric (TEPcolor) methods, showed abundant (6.1 x 10(6)-4.4 x 10(7) L-1) and relatively small (0.5-20 mu m) particles, leading to a low total volume fraction (0.05-2.2 ppm) of TEPmicro and similar vertical profiles of TEPcolor Estimates of carbon content in TEP (TEP-C) derived from the microscopic approach yielded surface concentration of 1.50 mu mol CL-1. The contribution of TEP-C to particulate organic carbon (POC) was estimated to be 12% (molar C ratio) during this survey. Our results suggest that TEP formation is a probable first step to rapid and efficient export of C during declining coccolithophorid blooms. (C) 2009 Elsevier Ltd. All rights reserved.
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Harlay, Jérôme ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
De Bodt, Caroline; Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium
Engel, Anja; Alfred Wegener Institute for Polar and Marine Research, P.O. Box 120161 – 27515 Bremerhaven, Germany
Jansen, Sandra; Alfred Wegener Institute for Polar and Marine Research, P.O. Box 120161 – 27515 Bremerhaven, Germany
d'Hoop, Quentin; Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium
Piontek, Judith; Alfred Wegener Institute for Polar and Marine Research, P.O. Box 120161 – 27515 Bremerhaven, Germany
Alldredge A.L., Passow U., and Logan B.E. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Research Part I: Oceanographic Research Papers 40 (1993) 1131-1140
Arruda Fatibello S.H.S., Henriques Vieira A.A., and Fatibello-Filho O. A rapid spectrophotometric method for the determination of transparent exopolymer particles (TEP) in freshwater. Talanta 62 (2004) 81-85
Balch W.M., Kilpatrick K.A., Holligan P., Harbour D., and Fernandez E. The 1991 coccolithophore bloom in the central North Atlantic.2. Relating optics to coccolith concentration. Limnology and Oceanography 41 (1996) 1684-1696
Barlow R.G., Mantoura R.F.C., Cummings D.G., Pond D.W., and Harris R.P. Evolution of phytoplankton pigments in mesocosm experiments. Estuarine, Coastal and Shelf Science 46 (1998) 15-22
Barlow R.G., Mantoura R.F.C., Gough M.A., and Fileman T.W. Pigment signatures of the phytoplankton composition in the northeastern Atlantic during the 1990 spring bloom. Deep Sea Research Part II: Topical Studies in Oceanography 40 (1993) 459-477
Berman T., and Viner-Mozzini Y. Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret. Aquatic Microbial Ecology 24 (2001) 255-264
Brown C.W., and Yoder J.A. Coccolithophorid blooms in the global ocean. Journal of Geophysical Research 99 (1994) 7467-7482
Brussaard C.P.D., Kuipers B., and Veldhuis M.J.W. A mesocosm study of Phaeocystis globosa population dynamics: I. Regulatory role of viruses in bloom control. Harmful Algae 4 (2005) 859-874
Cadée G.C. Macroaggregates of Emiliana huxleyi in sediment traps. Marine Ecology-Progress Series 24 (1985) 193-196
Catsberg T., Larsen A., Sandaa R.A., Brussaard C.P.D., Egge J.K., Heldal M., Thyrhaug R., van Hannen E.J., and Bratbak G. Microbial population dynamics and diversity during a bloom of the marine coccolithophorid Emiliania huxleyi (Haptophyta). Marine Ecology-Progress Series 221 (2001) 39-43
De La Rocha C.L., and Passow U. Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep Sea Research Part II: Topical Studies in Oceanography 54 (2007) 639-658
de Wilde P.A.W.J., Duineveld G.C.A., Berghuis E.M., Lavaleye M.S.S., and Kok A. Late-summer mass deposition of gelatinous phytodetritus along the slope of the N.W. European Continental Margin. Progress in Oceanography 42 (1998) 165-187
Delille B., Harlay J., Zondervan I., Jacquet S., Chou L., Wollast R., Bellerby R.G.J., Frankignoulle M., Borges A.V., Riebesell U., and Gattuso J.-P. Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochemical Cycles 19 (2005) GB2023
Egge J.K., and Aksnes D.L. Silica as regulating nutrient in phytoplankton competition. Marine Ecology-Progress Series 83 (1992) 281-289
Engel A. The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom. Journal of Plankton Research 22 (2000) 485-497
Engel A. Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton. Journal of Plankton Research 24 (2002) 49-53
Engel A. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep Sea Research Part I: Oceanographic Research Papers 51 (2004) 83-92
Engel, A., 2009. In: Wurl, O. (Ed.), Marine Gel Particles, Practical Guidelines for the Analysis of Seawater. CRC Press, Taylor & Francis Group, Boca Rayton, FL, USA, in press. ISBN: 9781420073065.
Engel A., Delille B., Jacquet S., Riebesell U., Rochelle-Newall E., Terbruggen A., and Zondervan I. Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquatic Microbial Ecology 34 (2004) 93-104
Engel A., Goldthwait S., Passow U., and Alldredge A.L. Temporal decoupling of carbon and nitrogen dynamics in a mesocosm diatom bloom. Limnology and Oceanography 47 (2002) 753-761
Engel A., and Passow U. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Marine Ecology-Progress Series 219 (2001) 1-10
Engel A., Zondervan I., Aerts K., Benthien A., Chou L., DeLille B., Gattuso J.-P., Harlay J., Heemann C., Hoffmann L., Jacquet S., Nejstgaard J., Pizay M.-D., Rochelle-Newall E., Schneider U., Terbrueggen A., and Riebesell U. Testing the direct effects of CO2 concentration on marine phytoplankton: a mesocosm experiment with the coccolithophorid Emiliania huxleyi. Limnology and Oceanography 50 (2005) 493-507
Fernández E., Boyd P.W., Holligan P.M., and Harbour D.S. Production of organic and inorganic carbon within a large-scale coccolithophore bloom in the northeast Atlantic Ocean. Marine Ecology-Progress Series 97 (1993) 271-285
François R., Honjo S., Kirshfield R., and Manganini S. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochemical Cycles 16 (2002) 1-20
Garcia C.M., Prieto L., Echevarria F., Garcia-Lafuente J., Ruiz J., Ruiz J., and Rubin J.P. Hydrodynamics and the spatial distribution of plankton and TEP in the Gulf of Cadiz (SW Iberian Peninsula). Journal of Plankton Research 24 (2002) 817-833
Grasshoff K., Ehrhardt M., and Kremling K. Methods of Seawater Analysis (1983), Verlag Chemie
GREPMA. Satellite (AVHRR:NOAA-9) and ship studies of a coccolithophorid bloom in the western English Channel. (Viollier, M., Sournia, A., Birrien, M.-J., Chrétiennot-Dinet, P., Le Borgne, P., Le Corre, P., Morin, P., and Olry, J. P.). Marine Nature 1 1 (1988) 1-14
Grossart H.-P., Simon M., and Logan B.E. Formation of macroscopic organic aggregates (Lake snow) in a large lake: the significance of transparent exopolymer particles, phytoplankton, and zooplankton. Limnology and Oceanography 42 (1997) 1651-1659
Holligan P.M., Fernández E., Aiken W., Balch W.M., Boyd P.W., Burkill P.H., Finch M., Groom S.B., Malin G., Muller K., Purdie D.A., Robinson C., Trees C.C., Turner S.M., and van der Wal P. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochemical Cycles 7 (1993) 879-900
Holligan P.M., Groom S.B., and Harbour D.S. What controls the distribution of the coccolithophore Emiliania huxleyi in the North Sea?. Fisheries Oceanography 2 (1993) 175-183
Holligan P.M., Viollier M., Harbour D.S., Camus P., and Champagne-Philippe M. Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304 (1983) 339-342
Huthnance J.M., Coelho H., Griffiths C.R., Knight P.J., Rees A.P., Sinha B., Vangriesheim A., White M., and Chatwin P.G. Physical structures, advection and mixing in the region of Goban spur. Deep Sea Research Part II: Topical Studies in Oceanography 48 (2001) 2979-3021
Iglesias-Rodriguez, M.D., Brown, C.W., Doney, S.C., Kleypas, J., Kolber, D.D., Kolber, Z., 2002. Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids. Global Biogeochemical Cycles, doi:10.1029/2001GB001454.
Jacquet S., Heldal M., Iglesias-Rodriguez M.D., Larsen A., Wilson W., and Bratbak G. Flow cytometric analysis of an Emiliania huxleyi bloom terminated by viral infection. Aquatic Microbial Ecology 27 (2002) 111-124
Joint I., Wollast R., Chou L., Batten S., Elskens M., Edwards E., Hirst A., Burkill P.H., Groom S., Gibb S., Miller A., Hydes D.J., Dehairs F., Antia A.N., Barlow R., Rees A., Pomroy A., Brockmann U., Cimmings D., Lampitt R., Loijens M., Mantoura F., Miller P., Raabe T., Alvarez-Salgado X., Stelfox C., and Woolfenden J. Pelagic production at the Celtic Sea shelf break. Deep Sea Research Part II: Topical Studies in Oceanography 48 (2001) 3049-3081
Kahl L.A., Vardi A., and Schofield O. Effects of phytoplankton physiology on export flux. Marine Ecology-Progress Series 354 (2008) 3-19
Klaas C.M., and Archer D.E. Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the Rain Ratio. Global Biogeochemical Cycles 16 (2002) 10.1029/2001GB001765
Kepkay P.E. Particle aggregation and the biological reactivity of colloids. Marine Ecology-Progress Series 109 (1994) 293-304
Krembs C., and Engel A. Abundance and variability of microorganisms and transparent exopolymeric particles across the ice-water interface of melting first year sea ice in the Laptev Sea (Arctic). Marine Biology 138 (2001) 173-185
Leppard G.G. The characterization of algal and microbial mucilages and their aggregates in aquatic ecosystems. Science of the Total Environment 165 (1995) 103-131
Linschooten C., van Bleijswijk J.D.L., Van Emburg P.R., De Vrind J.P.M., Kempers E.S., Westbroek P., and De Vrind-De Jong E.W. Role of light-dark cycle and medium composition on the production of coccoliths by Emiliania huxleyi (Haptophyceae). Journal of Phycology 27 (1991) 82-86
Logan B.E., Passow U., Alldredge A.L., Grossart H.-P., and Simon M. Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep Sea Research Part II: Topical Studies in Oceanography 42 (1995) 203-214
Mari X. Carbon content and C:N ratio of transparent exopolymeric particles (TEP) produced by bubbling exudates of diatoms. Marine Ecology-Progress Series 183 (1999) 59-71
Mari X., Beauvais S., Lemee R., and Pedrotti M.L. Non-Redfield C:N ratio of transparent exopolymeric particles in the northwestern Mediterranean Sea. Limnology and Oceanography 46 (2001) 1831-1836
Mari X., and Burd A. Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory. Marine Ecology-Progress Series 163 (1998) 63-76
Mari X., and Kiorboe T. Abundance, size distribution and bacterial colonization of transparent exopolymeric particles (TEP) during spring in the Kattegat. Journal of Plankton Research 18 (1996) 969-986
McCave I.N., Hall I.R., Antia A.N., Chou L., Dehairs F., Lampitt R.S., Thomsen L., van Weering T.C.E., and Wollast R. Distribution, composition and flux of particulate material over the European margin at 47°-50°N. Deep Sea Research Part II: Topical Studies in Oceanography 48 (2001) 3107-3139
Myklestad S.M. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Science of the Total Environment 165 (1995) 155-164
O'Reilly J.E., Maritorena S., Mitchell B.G., Siegel D.A., Carder K.L., Garver S.A., Kahru M., and McClain C. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research-Oceans 103 (1998) 24937-24953
Paasche E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycol 40 (2002) 503-529
Passow U. Transparent exopolymer particles (TEP) in aquatic environments. Progress in Oceanography 55 (2002) 287-333
Passow U., and Alldredge A.L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnology Oceanography 40 (1995) 1326-1335
Passow U., and Alldredge A.L. Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymer particles (TEP). Deep Sea Research Part II: Topical Studies in Oceanography 42 (1995) 99-109
Prieto L., Navarro G., Cozar A., Echevarria F., and Garcia C.M. Distribution of TEP in the euphotic and upper mesopelagic zones of the southern Iberian coasts. Deep Sea Research Part II: Topical Studies in Oceanography 53 (2006) 1314-1328
Radic T., Kraus R., Fuks D., Radic J., and Pecar O. Transparent exopolymeric particles' distribution in the northern Adriatic and their relation to microphytoplankton biomass and composition. Science of the Total Environment 353 (2005) 151-161
Riegman R., Stolte W., Nooderloos A.A.M., and Slezak D. Nutrient uptake and alkaline phosphatase (ec 3:1:3:1) activity of Emiliania huxleyi (prymnesiophyceae) during growth under N and P limitation in continuous cultures. Journal of Phycology 36 (2000) 87-96
Schartau M., Engel A., Schröter J., Thoms S., Völker C., and Wolf-Gladrow D. Modelling carbon overconsumption and the formation of extracellular particulate organic carbon. Biogeosciences Discussions 4 (2007) 13-67
Shackelford R., and Cowen J.P. Transparent exopolymer particles (TEP) as a component of hydrothermal plume particle dynamics. Deep Sea Research Part I: Oceanographic Research Papers 53 (2006) 1677-1694
Sugimoto K., Fukuda H., Baki M.A., and Koike I. Bacterial contributions to formation of transparent exopolymer particles (TEP) and seasonal trends in coastal waters of Sagami Bay, Japan. Aquatic Microbial Ecology 46 (2007) 31-41
Tyrrell T., and Merico A. Emiliania huxleyi: bloom observations and the conditions that induce them. In: Thierstein H.R., and Young J.R. (Eds). Coccolithophores. From molecular Processes to global Impact (2004), Springer, Berlin 75-97
Wollast R., and Chou L. Ocean Margin EXchange in the Northern Gulf of Biscay: OMEX I. An introduction. Deep Sea Research Part II: Topical Studies in Oceanography 48 (2001) 2971-2978
Wotton R. The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Scientia Marina 68 (2004) 13-21
Wright S.W., and Jeffrey S.W. High-resolution HPLC system for chlorophylls and carotenoids of marine phytoplankton. In: Jeffrey S.W., Mantoura R.F.C., and Wright S.W. (Eds). Phytoplankton Pigments in Oceanography (1997), UNESCO Publishing 327-341
Yentsch C.S., and Menzel D.W. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Research and Oceanographic Abstracts 10 (1963) 221-231