Mouchet, Anne ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
Climate and biogeochemical response to a rapid melting of the West-Antarctic Ice Sheet during interglacials and implications for future climate
Publication date :
2010
Journal title :
Paleoceanography
ISSN :
0883-8305
eISSN :
1944-9186
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Bamber, J. L., R. E.M. Riva, B. L. A. Vermeersen, and A. M. LeBrocq (2009), Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet, Science, 324, 901-903, doi:10.1126/science.1169335.
Barker, S., P. Diz, M. J. Vautravers, J. Pike, G. Knorr, I. R. Hall, and W. S. Broecker (2009), Interhemispheric Atlantic seesaw response during the last deglaciation, Nature, 457, 1097-1102, doi:10.1038/nature07770.
Bindschadler, R. A. (1998), The future of the West Antarctic Ice Sheet, Science, 282, 428-429, doi:10.1126/science.282.5388.428. (Pubitemid 28483659)
Brovkin, V., A. Ganopolski, and Y. Svirezhev (1997), A continuous climate-vegetation classification for use in climate-biosphere studies, Ecol. Modell., 101, 251-261, doi:10.1016/ S0304-3800(97)00049-5.
Brovkin, V., J. Bendtsen, M. Claussen, A. Ganopolski, C. Kubatzki, V. Petoukhov, and A. Andreev (2002), Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global Biogeochem. Cycles, 16(4), 1139, doi:10.1029/2001GB001662.
Campin, J. M., and H. Goosse (1999), Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate, Tellus, Ser. A, 51, 412-430.
Carr, A. S., M. D. Bateman, D. L. Roberts, C. V. Murray-Wallace, Z. Jacobs, and P. J. Holmes (2010), The last interglacial sea-level high stand on the southern Cape coastline of South Africa, Quat. Res., 73, 351-363, doi:10.1016/ j.yqres.2009.08.006.
Conway, H., B. L. Hall, G. H. Denton, A. M. Gades, and E. D. Waddington (1999), Past and Future Grounding-Line Retreat of the West Antarctic Ice Sheet, Science, 286, 280-283, doi:10.1126/science.286.5438.280. (Pubitemid 29484689)
Gent, P. R., J. Willebrand, T. J. Dougall, and J. C. McWilliams (1995), Parameterizing eddy-induced transports in ocean circulation models, J. Phys. Oceanogr., 25, 463-474, doi:10.1175/1520-0485(1995)0252.0.CO;2.
Goosse, H., and T. Fichefet (1999), Importance of ice-ocean interactions for the global ocean circulation: A model study, J. Geophys. Res., 104(C10), 23,337-23,355, doi:10.1029/1999JC900215.
Goosse, H., E. Deleersnijder, T. Fichefet, and M. H. England (1999), Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing, J. Geophys. Res., 104(C6), 13,681-13,695, doi:10.1029/ 1999JC900099.
Goosse, H., et al. (2010), Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 309-390, doi:10.5194/gmdd-3-309-2010.
Hattermann, T., and A. Levermann (2010), Response of Southern Ocean circulation to global warming may enhance basal ice shelf melting around Antarctica, Clim. Dyn., 35(5), 741-756, doi:10.1007/s00382-009-0643-3.
Hearty, P. J., J. T. Hollin, A. C. Neumann, M. J. O'Leary, and M. McCulloch (2007), Global sea-level fluctuations during the Last Intergla-ciation (MIS 5e), Quat. Sci. Rev., 26, 2090-2112, doi:10.1016/j.quascirev.2007.06.019. (Pubitemid 350016497)
Hodell, D. A., K. A. Venz, C. D. Charles, and U. S. Ninnemann (2003), Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean, Geochem. Geophys. Geosyst., 4(1), 1004, doi:10.1029/2002GC000367.
Ivchenko, V. O., V. B. Zalesny, M. R. Drinkwater, and J. Schröter (2006), A quick response of the equatorial ocean to Antarctic sea ice/salinity anomalies, J. Geophys. Res., 111, C10018, doi:10.1029/2005JC003061. (Pubitemid 44941041)
Jongma, J. I., E. Driesschaert, T. Fichefet, H. Goosse, and H. Renssen (2009), The effect of dynamic-thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model, Ocean Modell., 26, 104-113.
Jouzel, J., et al. (2007), Orbital and millennial Antarctic climate variability over the past 800,000 years, Science, 317, 793-796, doi:10.1126/science.1141038. (Pubitemid 47263433)
Kim, S. J., and T. J. Crowley (2000), Increased Pliocene North Atlantic Deep Water: Cause or consequence of Pliocene warming?, Paleo-ceanography, 15, 451-455, doi:10.1029/ 1999PA000459.
Lim, G. H., J. R. Holton, and J. M. Wallace (1991), The structure of the ageostrophic wind field in baroclinic waves, J. Atmos. Sci., 48, 1733-1745, doi:10.1175/1520-0469(1991)0482.0.CO;2.
Lythe, M. B., D. G. Vaughan, and the BEDMAP Consortium (2001), BEDMAP: A new ice thickness and subglacial topographic model of Antarctica, J. Geophys. Res., 106, 11,335- 11,351, doi:10.1029/2000JB900449.
Ma, H., L. Wu, and L. Chun (2010), Global tele-connections in response to freshening over the Antarctic Ocean, J. Clim., doi:10.1175/ 2010JCLI3634.1, in press.
Menviel, L., A. Timmermann, A. Mouchet, and O. Timm (2008), Climate and marine carbon cycle response to changes in the strength of the southern hemispheric westerlies, Paleoceanogra-phy, 23, PA4201, doi:10.1029/2008PA001604.
Mercer, J. H. (1978), Glacial development and temperature trends in the Antarctic and in South America, in Antarctic Glacial History and World Paleoenvironments, pp. 73-79, A. A. Balkema, Rotterdam, Netherlands.
Mouchet, A., and L. M. Francois (1996), Sensitivity of a Global Oceanic Carbon Cycle Model to the circulation and to the fate of organic matter: Preliminary results, Phys. Chem. Earth, 21, 511-516, doi:10.1016/ S0079-1946(97)81150-0.
Naish, T., et al. (2009), Obliquity-paced Pliocene West Antarctic ice sheet oscillations, Nature, 458, 322-328, doi:10.1038/ nature07867.
Ninnemann, U. S., and C. D. Charles (2002), Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability, Earth Planet. Sci. Lett., 201, 383-396, doi:10.1016/ S0012-821X(02)00708-2.
Oppenheimer, M. (1998), Global warming and the stability of the West Antarctic Ice Sheet, Nature, 393, 325-332, doi:10.1038/30661. (Pubitemid 28269698)
Oppenheimer, M., and R. B. Alley (2004), The West Antarctic Ice Sheet and long term climate policy, Clim. Change, 64, 1-10, doi:10.1023/B:CLIM. 0000024792.06802.31. (Pubitemid 38983065)
Opsteegh, J. D., R. J. Haarsma, F. M. Selten, and A. Kattenberg (1998), ECBILT: A dynamic alternative to mixed boundary conditions in ocean models, Tellus, Ser. A., 50, 348-367.
Pagani, M., Z. Liu, J. LaRiviere, and A. C. Ravelo (2010), High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations, Nat. Geosci., 3, 27-30, doi:10.1038/ngeo724.
Pahnke, K., and R. Zahn (2005), Southern Hemisphere water mass conversion linked with North Atlantic climate variability, Science, 307, 1741-1746, doi:10.1126/science.1102163. (Pubitemid 40388610)
Payne, A. J., A. Vieli, A. P. Shepherd, D. J. Wingham, and E. Rignot (2004), Recent dramatic thinning of largest west antarctic ice stream triggered by oceans, Geophys. Res. Lett., 31, L23401, doi:10.1029/2004GL021284. (Pubitemid 40482447)
Pollard, D., and R. M. DeConto (2009), Modelling West Antarctic ice sheet growth and collapse through the past five million years, Nature, 458, 329-332, doi:10.1038/nature07809.
Raymo, M. E., B. Grant, M. Horowitz, and G. H. Rau (1996), Mid-Pliocene warmth: Stronger greenhouse and stronger conveyor, Mar. Micro-paleontol., 27, 313-326, doi:10.1016/0377-8398 (95)00048-8.
Renssen, H., H. Goosse, T. Fichefet, V. Brovkin, E. Driesschaert, and F. Wolk (2005), Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model, Clim. Dyn., 24, 23-43, doi:10.1007/s00382-004-0485-y. (Pubitemid 40289782)
Richardson, G., M. R. Wadley, K. J. Heywood, and D. P. Stevens (2005), Short-term climate response to a freshwater pulse in the Southern Ocean, Geophys. Res. Lett., 32, L03702, doi:10.1029/2004GL021586. (Pubitemid 40578651)
Rignot, E., and S. S. Jacobs (2002), Rapid bottom melting widespread near Antarctic Ice Sheet grounding lines, Science, 296, 2020-2023, doi:10.1126/science.1070942. (Pubitemid 34627523)
Scherer, R. P., A. Aldahan, W. Tulaczyk, G. Possnert, H. Englehardt, and B. Kamb (1998), Pleistocene collapse of the West Antarctic Ice Sheet, Science, 281, 82-85, doi:10.1126/science.281.5373.82. (Pubitemid 28354047)
Stocker, T. F., A. Timmermann, M. Renold, and O. Timm (2007), Effects of salt compensation on the climate model response in simulations of large changes of the Atlantic Meridional Overturning Circulation, J. Clim., 20, 5912-5928, doi:10.1175/2007JCLI1662.1.
Stouffer, R. J., D. Seidov, and B. J. Haupt (2007), Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean, J. Clim., 20, 436-448, doi:10.1175/ JCLI4015.1.
Swingedouw, D., T. Fichefet, P. Huybrechts, H. Goosse, E. Driesschaert, and M.-F. Loutre (2008), Antarctic ice-sheet melting provides negative feedbacks on future climate warming, Geophys. Res. Lett., 35, L17705, doi:10.1029/ 2008GL034410.
Swingedouw, D., T. Fichefet, H. Goosse, and M.-F. Loutre (2009), Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate, Clim. Dyn., 33, 365-381, doi:10.1007/s00382-008-0496-1.
Trevena, J., W. P. Sijp, and M. H. England (2008), Stability of Antarctic Bottom Water formation to freshwater fluxes and implications for global climate, J. Clim., 21, 3310-3326, doi:10.1175/2007JCLI2212.1.
Van Der Burgh, J., H. Visscher, D. Dilcher, and M. Kürschner (1993), Paleoatmospheric signatures in Neogene fossil leaves, Science, 260, 1788-1790, doi:10.1126/science.260. 5115.1788.
Weaver, A. J., O. A. Saenko, P. U. Clark, and J. X. Mitrovica (2003), Meltwater pulse 1A from Antarctica as a trigger of the Bølling- Allerød warm interval, Science, 299, 1709-1713, doi:10.1126/science. 1081002. (Pubitemid 36337192)
Zhang, J. (2007), Increasing Antarctic sea ice under warming atmospheric and ocean conditions, J. Clim., 20, 2515-2529, doi:10.1175/ JCLI4136.1.