Article (Scientific journals)
Wavelets Techniques for Pointwise Anti-Hölderian Irregularity
Clausel, Marianne; Nicolay, Samuel
2011In Constructive Approximation, 33, p. 41-75
Peer Reviewed verified by ORBi
 

Files


Full Text
10.1007_s00365-010-9120-9.pdf
Publisher postprint (849.19 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Pointwise Hölder regularity; Wavelets; Spectrum of singularities; Multifractal formalism
Abstract :
[en] In this paper, we introduce a notion of weak pointwise Hölder regularity, starting from the definition of the pointwise anti-Hölder irregularity. Using this concept, a weak spectrum of singularities can be defined as for the usual pointwise Hölder regularity.We build a class of wavelet series satisfying the multifractal formalism and thus show the optimality of the upper bound. We also show that the weak spectrum of singularities is disconnected from the casual one (referred to here as strong spectrum of singularities) by exhibiting a multifractal function made of Davenport series whose weak spectrum differs from the strong one.
Disciplines :
Mathematics
Author, co-author :
Clausel, Marianne
Nicolay, Samuel  ;  Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
Wavelets Techniques for Pointwise Anti-Hölderian Irregularity
Publication date :
2011
Journal title :
Constructive Approximation
ISSN :
0176-4276
eISSN :
1432-0940
Publisher :
Springer
Volume :
33
Pages :
41-75
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 18 December 2010

Statistics


Number of views
91 (30 by ULiège)
Number of downloads
25 (21 by ULiège)

Scopus citations®
 
9
Scopus citations®
without self-citations
5
OpenCitations
 
9
OpenAlex citations
 
11

Bibliography


Similar publications



Contact ORBi