Paper published in a book (Scientific congresses and symposiums)
On uncertainty measures used for decision tree induction
Wehenkel, Louis
1996In Bouchon-Meunier, Bernadette (Ed.) Information Processing and Management of Uncertainty in Knowledge-Based Systems
Peer reviewed
 

Files


Full Text
10-3.1.1.94.2226.pdf
Author preprint (142.46 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Machine Learning; Decision Tree Induction
Abstract :
[en] This paper provides a further look at uncertainty or information criteria used in the context of deci- sion tree induction, and more generally of learn- ing conditional class probability models. We show the high degree of similarity among two main families of criteria based respectively on the logarithmic SHANNON entropy function and the quadratic GINI index. We start by introduc- ing a general family of entropy functions and then discuss the latter particular cases, and end up with a short review of the Kolmogorov-Smirnov dis- tance,anotherrelatedmeasure.
Disciplines :
Computer science
Author, co-author :
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
On uncertainty measures used for decision tree induction
Publication date :
1996
Event name :
IPMU-96, Information Processing and Management of Uncertainty in Knowledge-Based Systems
Event date :
1996
Audience :
International
Main work title :
Information Processing and Management of Uncertainty in Knowledge-Based Systems
Editor :
Bouchon-Meunier, Bernadette
Pages :
6
Peer reviewed :
Peer reviewed
Available on ORBi :
since 17 December 2010

Statistics


Number of views
371 (5 by ULiège)
Number of downloads
593 (15 by ULiège)

Bibliography


Similar publications



Contact ORBi