Article (Scientific journals)
Machine-learning approaches to power-system security assessment
Wehenkel, Louis
1997In IEEE Expert, 12 (5), p. 60-72
Peer reviewed
 

Files


Full Text
10.1.1.53.6331.pdf
Author preprint (173.95 kB)
Download
Full Text Parts
LW-Machine_learning_approaches_to_power-system_security_assessment.pdf
Author postprint (1.26 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] The paper discusses a framework that uses machine learning and other automatic-learning methods to assess power-system security. The framework exploits simulation models in parallel to screen diverse simulation scenarios of a system, yielding a large database. Using data mining techniques, the framework extracts synthetic information about the simulated system's main features from this database
Disciplines :
Computer science
Author, co-author :
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Machine-learning approaches to power-system security assessment
Publication date :
September 1997
Journal title :
IEEE Expert
ISSN :
0885-9000
Publisher :
IEEE
Volume :
12
Issue :
5
Pages :
60-72
Peer reviewed :
Peer reviewed
Available on ORBi :
since 17 December 2010

Statistics


Number of views
59 (5 by ULiège)
Number of downloads
136 (1 by ULiège)

Scopus citations®
 
96
Scopus citations®
without self-citations
94
OpenCitations
 
70
OpenAlex citations
 
129

Bibliography


Similar publications



Contact ORBi