Antelmann, H., et al. 2001. A proteomic view on genome-based signal peptide predictions. Genome Res. 11:1484-1502.
Birolo, L., et al. 2000. Aspartate aminotransferase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Cloning, expression, properties, and molecular modelling. Eur. J. Biochem. 267:2790-2802.
Blanvillain, S., et al. 2007. Plant carbohydrate scavenging through tonBdependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2:e224.
Bowman, J. P., S. A. McCammon, M. V. Brown, D. S. Nichols, and T. A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63:3068-3078.
Brinkmeyer, R., et al. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69:6610-6619.
Brown, R. N., M. F. Romine, A. A. Schepmoes, R. D. Smith, and M. S. Lipton. Mapping the subcellular proteome of Shewanella oneidensis MR-1 using sarkosyl-based fractionation and LC-MS/MS protein identification. J. Proteome Res. 9:4454-4463.
Buttner, K., et al. 2001. A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22:2908-2935.
Cheng, Q., M. C. Yu, A. R. Reeves, and A. A. Salyers. 1995. Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate. J. Bacteriol. 177:3721-3727.
Christie-Oleza, J. A., and J. Armengaud. 2010. In-depth analysis of exoproteomes from marine bacteria by shotgun liquid chromatography-tandem mass spectrometry: the Ruegeria pomeroyi DSS-3 case-study. Mar. Drugs 8:2223-2239.
Collins, T., et al. 2002. A novel family 8 xylanase, functional and physicochemical characterization. J. Biol. Chem. 277:35133-35139.
Cunin, R., N. Glansdorff, A. Pierard, and V. Stalon. 1986. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50:314-352.
Cusano, A. M., E. Parrilli, G. Marino, and M. L. Tutino. 2006. A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125. Microb. Cell Fact. 5:40.
Danchin, A. 1997. Comparison between the Escherichia coli and Bacillus subtilis genomes suggests that a major function of polynucleotide phosphorylase is to synthesize CDP. DNA Res. 4:9-18.
de Pascale, D., et al. 2008. The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12:311-323.
Di Rocco, G., et al. 2008. Cloning, expression and physicochemical characterization of a di-heme cytochrome c (4) from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125. J. Biol. Inorg. Chem. 13:789-799.
Donovan, C. J., et al. 2009. Pseudoalteromonas bacteria are capable of degrading paralytic shellfish toxins. Appl. Environ. Microbiol. 75:6919-6923.
Duilio, A., M. L. Tutino, and G. Marino. 2004. Recombinant protein production in Antarctic Gram-negative bacteria. Methods Mol. Biol. 267:225-237.
Evangelista, G., P. Falasca, I. Ruggiero, M. Masullo, and G. Raimo. 2009. Molecular and functional characterization of polynucleotide phosphorylase from the Antarctic eubacterium Pseudoalteromonas haloplanktis. Protein Pept. Lett. 16:999-1005.
Evans, F. F., M. J. Raftery, S. Egan, and S. Kjelleberg. 2007. Profiling the secretome of the marine bacterium Pseudoalteromonas tunicata using amine-specific isobaric tagging (iTRAQ). J. Proteome Res. 6:967-975.
Eymann, C., et al. 2004. A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4:2849-2876.
Feller, G., et al. 1998. Characterization of the C-terminal propeptide involved in bacterial wall spanning of alpha-amylase from the psychrophile Alteromonas haloplanctis. J. Biol. Chem. 273:12109-12115.
Feng, Y., H. Huang, J. Liao, and S. N. Cohen. 2001. Escherichia coli poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J. Biol. Chem. 276:31651-31656.
Fulda, S., F. Huang, F. Nilsson, M. Hagemann, and B. Norling. 2000. Proteomics of Synechocystis sp. strain PCC 6803. Identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur. J. Biochem. 267:5900-5907.
Gauthier, G., M. Gauthier, and R. Christen. 1995. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol. 45:755-761.
Georlette, D., et al. 2000. A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. Eur. J. Biochem. 267:3502-3512.
Hieu, C. X., et al. 2008. Detailed proteome analysis of growing cells of the planctomycete Rhodopirellula baltica SH1T. Proteomics 8:1608-1623.
Jackson, G. A. 1989. Simulation of bacterial attraction and adhesion to falling particles in an aquatic environment. Limnol. Oceanogr. 34:514-530.
Klappenbach, J. A., J. M. Dunbar, and T. M. Schmidt. 2000. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66:1328-1333.
Klumpp, S., Z. Zhang, and T. Hwa. 2009. Growth rate-dependent global effects on gene expression in bacteria. Cell 139:1366-1375.
Lee, B. C. 1995. Quelling the red menace: haem capture by bacteria. Mol. Microbiol. 18:383-390.
Marx, J. C., T. Collins, S. D'Amico, G. Feller, and C. Gerday. 2007. Coldadapted enzymes from marine Antarctic microorganisms. Mar. Biotechnol. (NY) 9:293-304.
Medigue, C., et al. 2005. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res. 15:1325-1335.
Merlino, A., et al. 2008. Crystallization and preliminary X-ray diffraction studies of a psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis. Protein Pept. Lett. 15:415-418.
Mounier, J., C. Monnet, N. Jacques, A. Antoinette, and F. Irlinger. 2009. Assessment of the microbial diversity at the surface of Livarot cheese using culture-dependent and independent approaches. Int. J. Food Microbiol. 133:31-37.
Nagano, K., et al. 2007. Characterization of RagA and RagB in Porphyromonas gingivalis: study using gene-deletion mutants. J. Med. Microbiol. 56: 1536-1548.
Neugebauer, H., et al. 2005. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J. Bacteriol. 187:8300-8311.
Papa, R., et al. 2006. Proteomic identification of a two-component regulatory system in Pseudoalteromonas haloplanktis TAC125. Extremophiles 10:483-491.
Piette, F., et al. 2010. Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol. Microbiol. 76:120-132.
Reeves, A. R., J. N. D'Elia, J. Frias, and A. A. Salyers. 1996. A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J. Bacteriol. 178:823-830.
Reichelt, J. L., and P. Baumann. 1973. Change of the name Alteromonas marinopraesens (ZoBell and Upham) Baumann et al. to Alteromonas haloplanktis (ZoBell and Upham) comb. nov. and assignment of strain ATCC 23821 (Pseudomonas enalia) and strain c-A1 of De Voe and Oginsky to this species. Int. J. Syst. Bacteriol. 23:438-441.
Schauer, K., B. Gouget, M. Carriere, A. Labigne, and H. de Reuse. 2007. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol. Microbiol. 63:1054-1068.
Schweder, T., S. Markert, and M. Hecker. 2008. Proteomics of marine bacteria. Electrophoresis 29:2603-2616.
Srimathi, S., G. Jayaraman, G. Feller, B. Danielsson, and P. R. Narayanan. 2007. Intrinsic halotolerance of the psychrophilic alpha-amylase from Pseudoalteromonas haloplanktis. Extremophiles 11:505-515.
Stocker, R., J. R. Seymour, A. Samadani, D. E. Hunt, and M. F. Polz. 2008. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl. Acad. Sci. U. S. A. 105:4209-4214.
Tosco, A., et al. 2003. GroEL from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125: molecular characterization and gene cloning. Extremophiles 7:17-28.
Tutino, M. L., G. di Prisco, G. Marino, and D. de Pascale. 2009. Coldadapted esterases and lipases: from fundamentals to application. Protein Pept. Lett. 16:1172-1180.
Violot, S., et al. 2003. Expression, purification, crystallization and preliminary X-ray crystallographic studies of a psychrophilic cellulase from Pseudoalteromonas haloplanktis. Acta Crystallogr. D Biol. Crystallogr. 59:1256-1258.
Voigt, B., et al. 2004. A proteomic view of cell physiology of Bacillus licheniformis. Proteomics 4:1465-1490.
Watt, S. A., A. Wilke, T. Patschkowski, and K. Niehaus. 2005. Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics 5:153-167.
Wilmes, B., A. Hartung, M. Lalk, M. Liebeke, T. Schweder, and P. Neubauer. 2010. Fed-batch process for the psychrotolerant marine bacterium Pseudoalteromonas haloplanktis. Microb. Cell Fact. 9:72.
Wolff, S., H. Hahne, M. Hecker, and D. Becher. 2008. Complementary analysis of the vegetative membrane proteome of the human pathogen Staphylococcus aureus. Mol. Cell. Proteomics 7:1460-1468.
Zobell, C. E. 1941. Studies on marine bacteria. The cultural requirements of heterotrophic aerobes. J. Mar. Res. 4:41-75.