Atmospheric Composition and Structure: Airglow and aurora; Magnetospheric Physics: Energetic particles: precipitating; Planetary Sciences: Solid Surface Planets: Aurorae and airglow; Space Plasma Physics: Kinetic and MHD theory; airglow; ENA; escape; hot oxygen
Abstract :
[en] The role of the auroral sources induced by the electron and proton precipitation in the formation of the hot oxygen corona in the polar upper atmosphere is studied. It is found that both electron precipitation through exothermic chemistry and proton precipitation through atmospheric sputtering significantly contribute to the population of the hot oxygen geocorona. It is also found that only atmospheric sputtering results in the formation of the escape flux of energetic oxygen atoms, providing an important source of heavy atoms for the magnetosphere. The exothermic chemistry induced by the electron precipitation and/or by the absorption of the solar UV radiation is operating continuously in the polar upper atmosphere and results in a steady population of the very near-Earth environment by suprathermal oxygen atoms with energies below a few eV. By contrast, atmospheric sputtering by magnetospheric protons provides a more variable contribution, strongly coupled with the cusp region. It produces the more energetic oxygen atoms that populate the external regions of the hot oxygen geocorona. The results of calculations are in a good agreement with the analysis of the low-latitude perigee Low Energy Neutral Atom (LENA) images showing that the instrument signal consists of low to medium energy (5-30 eV) oxygen atoms produced in and near the cusp region. The more energetic (>30 eV) fraction of energetic oxygen atoms produced by the ion-induced atmospheric sputtering could be responsible for the energetic neutrals observed by the instrument far away from the cusp or oval regions. The total escape flux of oxygen atoms associated with atmospheric sputtering by protons is found about 8 × 10[SUP]23[/SUP] s[SUP]-1[/SUP] therefore this mechanism may provide a substantial contribution to the magnetospheric oxygen population.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Shematovich, V. I.; Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia) ; AB(Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia) ; AC(Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Liège, Belgium
Bisikalo, D. V.
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
Energetic oxygen atoms in the polar geocorona
Publication date :
01 October 2006
Journal title :
Journal of Geophysical Research. Space Physics
ISSN :
2169-9380
eISSN :
2169-9402
Publisher :
American Geophysical Union (AGU), Washington, United States - District of Columbia
Balakrishnan, N., V. Kharchenko, and A. Dalgamo (1998a), Slowing of energetic O(3P) atoms in collisions with N2, J. Geophys. Res., 103, 23,393-23,398.
Balakrishnan, N., V. Kharchenko, and A. Dalgamo (1998b), Quantum mechanical and semiclassical studies of N + N2 collisions and their application to thermalization of fast N atoms, J. Chem. Phys., 108, 943-949.
Bisikalo, D. V., V. I. Shematovich, and J.-C. Gérard (1995), Kinetic model of the formation of the hot oxygen geocorona. II. Influence of O+ ion precipitation, J. Geophys. Res., 100, 3715-3720.
Cosby, P. C. (1993), Electron-impact dissociation of oxygen, J. Chem. Phys., 98, 9560-9569.
Coumans, V., J.-C. Gérard, B. Hubert, S. B. Mende, and S. W. H. Cowley (2004), Morphology and seasonal variations of global auroral proton precipitation observed by IMAGE-FUV, J. Geophys. Res., 109, A12205, doi:10.1029/2003JA010348.
Fox, J. L. (2005), Effects of dissociative recombination on the composition of planetary atmospheres, J. Phys. Conf. Ser., 4, 32-37.
Galand, M., and A. D. Richmond (1999), Magnetic mirroring in an incident proton beam, J. Geophys. Res., 104, 4447-4456.
Gardner, L. C., and R. W. Schunk (2004), Neutral polar wind, J. Geophys. Res., 109, A05301, doi:10.1029/2003JA010291.
Gardner, L. C., and R. W. Schunk (2005), Global neutral polar wind model, J. Geophys. Res., 110, A10302, doi:10.1029/2005JA011029.
Gérard, J.-C., P. G. Richards, V. I. Shematovich, and D. V. Bisikalo (1995), The importance of new chemical sources for the hot oxygen geocorona, Geophys. Res. Lett., 22, 279-282.
Gérard, J.-C., B. Hubert, D. V. Bisikalo, and V. I. Shematovich (2000), A model of the Lyman-α line profile in the proton aurora, J. Geophys. Res., 105, 15,795-15,806.
Guberman, S. L. (1997), Mechanism for the green glow of the upper atmosphere, Science, 278, 1276-1278.
Hardy, D. A., M. S. Gussenhoven, and E. Holeman (1985), A statistical model of auroral electron precipitation, J. Geophys. Res., 90, 4229-4248.
Hardy, D. A., M. S. Gussenhoven, and D. Brautigam (1989), A statistical model of auroral ion precipitation, J. Geophys. Res., 94, 370-392.
Hedin, A. E. (1991), Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159-1172
Hickey, M. P., P. G. Richards, and D. G. Torr (1995), New sources for the hot oxygen geocorona: Solar cycle, seasonal, latitudinal, and diurnal variations, J. Geophys. Res., 100, 17,377-17,388.
Hubert, B., J.-C. Gérard, D. V. Bisikalo, V. I. Shematovich, and S. C. Solomon (2001), The role of proton precipitation in the excitation of auroral FUV emissions, J. Geophys. Res., 106, 21,475-21,494.
Ishimoto, M., G. R. Romick, and C.-I. Meng (1992), Energy distribution of energetic O+ precipitation into the atmosphere, J. Geophys. Res., 97, 8619-8629.
Johnson, R. E. (1994), Plasma-induced sputtering of an atmosphere, Space Sci. Rev., 69, 215-253.
Kella, D., L. Vejby-Christensen, P. J. Johnson, H. B. Pedersen, and H. Andersen (1997), The source of green light emission determined from a heavy-ion ring storage experiment, Science, 276, 1530-1533.
Kharchenko, V., A. Dalgarno, B. Zygelman, and J.-H. Yee (2000), Energy transfer in collisions of oxygen atoms in the terrestrial atmosphere, J. Geophys. Res., 105, 24,899-24,906.
Luna, H., C. McGrath, M. B. Shah, R. E. Johnson, M. Liu, C. J. Latimer, and E. C. Montenegro (2005), Dissociative charge exchange and ionization of O2 by fast H+ and O+ ions: Energetic ton interactions in Europe's oxygen atmosphere and neutral torus, Astrophys. J., 628, 1086-1096.
Moore, T. E., et al. (2000), The low energy neutral atom imager for IMAGE, in The IMAGE Mission, edited by J. L. Burch, pp. 155-195, Springer, New York.
Richards, P. G., M. P. Hickey, and D. G. Torr (1994), New sources for the hot oxygen geocorona, Geophys. Res. Lett., 21, 657-660.
Schunk, R. W., and A. F. Nagy (2000), Ionospheres, Cambridge Univ. Press, New York.
Seki, K., R. C. Elphic, M. Hirahara, T. Terasawa, and T. Mukai (2001), On atmospheric loss of oxygen ions from Earth through magnetospheric processes, Science, 291, 1939-1941.
Shematovich, V. I., D. V. Bisikalo, and J.-C. Gérard (1994), A kinetic model of the formation of the hot oxygen geocorona: 1. Quiet geomagnetic conditions, J. Geophys. Res., 99, 23,217-23,228.
Shematovich, V. I., J.-C. Gérard, D. V. Bisikalo, and B. Hubert (1999), Thermalization of O(1D) atoms in the thermosphere, J. Geophys. Res., 104, 4287-4295.
Shematovich, V. I., D. V. Bisikalo, and J.-C. Gérard (2005), An auroral source of hot oxygen in the geocorona, Geophys. Res. Lett., 32, L02105, doi:10.1029/2004GL021912.
Solomon, S. C., P. B. Hays, and V. Abreu (1988), The auroral 6300 A emission: Observation and modeling, J. Geophys. Res., 93, 9867-9882.
Wilson, G. R., and T. E. Moore (2005), Origins and variation of terrestrial energetic neutral atoms outflow, J. Geophys. Res., 110, A02207, doi:10.1029/2003JA010356.
Wilson, G. R., T. E. Moore, and M. R. Collier (2003), Low-energy neutral atoms observed near the Earth, J. Geophys. Res., 108(A4), 1142, doi:10.1029/2002JA009643.
Van Zyl, B., and T. M. Stephen (1994), Dissociative ionization of H 2, N2, and 02 by electron impact, Phys. Rev. A, 50, 3164-3173.
Yau, A., and M. André (1997), Source of ion outflow in the high latitude ionosphere, Space Sci. Rev., 80, 1-25.