[en] [1] A total of 74 images of the ultraviolet footprint of the Io flux tube (IFT) on Jupiter's upper atmosphere made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope have been analyzed to characterize their location, morphology, and brightness distribution. The observations cover a wide range of central meridian Jovian longitudes and Io orbital positions and include north and south footprint emissions. Comparing the location of the IFT with that expected from the VIP4 model of the Jovian magnetic field, we find that the lead angle is generally not significantly different from zero in the System III longitude sector 125 degrees - 195 degrees. Instead, the lead angles reach about 8 degrees in the 50 degrees sector, coinciding with a region of possible magnetic anomaly. We observe that the brightness of the main footprint shows intrinsic intensity changes that appear to be controlled by the system III longitude of Io and its position above or below the center of the torus. The size of the primary spot magnetically maps into a region varying from 1 to over 10 Io diameters in Io's orbital plane. Multiple footprints are observed with varying brightness relative to the mean spot. The number of spots is found to increase as Io gets closer to the torus outer edge facing the spots. The separation between the first and second spots is typically 1 degrees-3 degrees of longitude and increases when Io is displaced from the torus center in the direction of the IFT signature. These features confirm that Alfven waves play an important role and generate energization of precipitated electrons. However, the observed variation of the FUV spot structure with Io's position appears inconsistent with models where reflections of Alfven wings occur between the torus boundary and Jupiter's ionosphere. Instead, the multiple spots apparently correspond to electron precipitation generated by Alfven waves reflected inside the plasma torus.
Saglam, Adem ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Clarke, J. T.
Language :
English
Title :
Morphology of the ultraviolet Io footprint emission and its control by Io's location
Publication date :
01 April 2006
Journal title :
Journal of Geophysical Research. Space Physics
ISSN :
2169-9380
eISSN :
2169-9402
Publisher :
Amer Geophysical Union, Washington, United States - Washington
Acuña, M. H., F. M. Neubauer, and N. F. Ness (1981), Standing Alfvén wave current system at Io: Voyager 1 observations, J. Geophys. Res, 86, 8513.
Bagenal, F., and Y. Leblanc (1988), Io's Alfvén wave pattern and the Jovian decametric arcs, Astron. Astrophys., 191, 311.
Belcher, J. W., et al. (1981), Plasma observations of the Alfvén wave generated by Io, J. Geophys. Res., 86, 8508.
Chust, T., A. Roux, W. S. Kurth, D. A. Gurnett, M. G. Kivelspn, and K. K. Kurana (2005), Are Io's Alfvén wings filamented? Galileo observation, Planet. Space Sci., 53, 395.
Clarke, J. T., et al. (1996), Far-ultraviolet imaging of Jupiter's aurora and the Io "footprint", Science, 274, 404.
Clarke, J. T., et al. (1998), Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission, J. Geophys. Res., 103, 20,217.
Clarke, J. T., et al. (2002), Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on Jupiter, Nature, 415, 997.
Connerney, J. E. P., and T. Satoh (2000), The H3+ ion: Remote diagnostic of the Jovian magnetosphere, Philos. Trans. R. Soc. London, Ser. A, 358, 2471.
Connerney, J. E. P., et al. (1993), Images of excited H3 + at the foot of the Io flux tube in Jupiter's atmosphere, Science, 262, 1035.
Connerney, J. E. P., M. H. Acuña, N. F. Ness, and T. Satoh (1998), New models of Jupiter's magnetic field constrained by the Io flux tube footprint, J. Geophys. Res., 103, 11,929.
Crary, F. J. (1997), On the generation of an electron beam by Io, J. Geophys. Res., 102, 37.
Crary, F. J., and F. Bagenal (1997), Coupling the plasma interaction at Io to Jupiter, Geophys. Res. Lett., 24, 2135.
Delamere, P. A., F. Bagenal, R. E. Ergun, and Y.-J. Su (2003), Momentum transfer between the Io plasma wake and Jupiter's ionosphere, J. Geophys. Res., 108(A6), 1241, doi:10.1029/2002JA009530.
Dols, V., J. C. Gérard, V. Clarke, J. Gustin, and D. Grodent (2000), Diagnostics of the Jovian aurora deduced from ultraviolet spectroscopy: Model and GHRS observations, Icarus, 147, 251.
Frank, L. A., and W. R. Paterson (1999), Intense electron beams observed at Io with the Galileo spacecraft, J. Geophys. Res, 104, 28,657.
Frank, L. A., et al. (1996), Plasma observations at Io with the Galileo spacecraft, Science, 274, 394.
Gérard, J. C., and V. Singh (1982), A model of energetic electrons and EUV emission in the Jovian and Saturnian atmospheres and implications, J. Geophys. Res., 87, 4525.
Gérard, J.-C., J. Gustin, D. Grodent, P. Delamere, and J. T. Clarke (2002), Excitation of the FUV Io tail on Jupiter: Characterization of the electron precipitation, J. Geophys. Res., 107(A11), 1394, doi:10.1029/2002JA009410.
Goertz, C. K. (1980), Io's interaction with the plasma torus, J. Geophys. Res., 85, 2949.
Goldreich, P., and D. Lynden-Bell (1969), Io: A Jovian unipolar inductor, Astrophys. J., 156, 59.
Grodent, D., J. H. Waite Jr., and J. C. Gérard (2001), A self-consistent model of the Jovian auroral thermal structure, J. Geophys. Res., 106, 12,933.
Grodent, D., J. T. Clarke, J. Kim, J. H. Waite Jr., and S. W. H. Cowley (2003), Jupiter's main auroral oval observed with HST-STIS, J. Geophys. Res., 108(A11), 1389, doi:10.1029/2003JA009921.
Gurnett, D. A., and C. K. Goertz (1981), Multiple Alfvén wave reflections excited by Io: Origin of the Jovian decametric arcs, J. Geophys. Res., 86, 717.
Hill, T. W., and V. M. Vasyliünas (2002), Jovian auroral signature of Io's corotational wave, J. Geophys. Res., 107(A12), 1464, doi:10.1029/2002JA009514.
Hinson, D. P. A., J. Kliore, F. M. Flasar, J. D. Twicken, P. J. Schinder, and R. G. Herrera (1998), Galileo radio occultation measurements of Io's ionosphere and plasma wake, J. Geophys. Res., 103, 29,343.
Kivelson, M. G., F. Bagenal, W. S. Kurth, F. M. Neubauer, C. Paranicas, and J. Saur (2004), Magnetospheric interactions with satellites, in Jupiter: The Planet, Satellites, and Magnetosphere, edited by F. Bagenal, T. E. Dowiing, and W. B. McKinnon, p. 513, Cambridge Univ. Press, New York.
Leblanc, Y. (1981), On the arc structure of the DAM Jupiter emission, J. Geophys. Res., 86, 8546.
Leblanc, Y., G. A. Dulk, and F. Bagenal (1994), On Io's excitation and the origin of Jupiter's decametric radiation, Astron. Astrophys., 290, 690.
Neubauer, F. M. (1980), Nonlinear standing Alfvén wave current system at Io: Theory, J. Geophys. Res., 85, 1171.
Prangé, R., D. Rego, L. Pallier, J. E. R. Connerney, P. Zarka, and J. Queinnec (1998), Detailed, study of FUV Jovian auroral features with the post-COSTAR HST faint object camera, J. Geophys. Res., 103, 20, 195.
Queinne, J., and P. Zarka (1998), Io-controlled decameter arcs and Io-Jupiter interaction, J. Geophys. Res., 103, 26,649.
Russell, C., and D. Huddleston (2000), The unipolar inductor myth: Mass addition or motional electric field as the source of field-aligned currents at Io, Adv. Space Res., 26, 1665.
Saur, J. (2004), A model of Io's local electric field for a combined Alfvénic and unipolar inductor far-field coupling, J. Geophys. Res., 109, A01210, doi:10.1029/2002JA009354.
Saur, J., F. M. Neubauer, D. F. Strobel, and M. E. Summers (1999), Three-dimensional plasma simulation of lo's interaction with the Io plasma torus: Asymmetric plasma flow, J. Geophys. Res., 104, 25,105.
Saur, J., F. M. Neubauer, J. E. P. Connerney, P. Zarka, and M. G. Kivelson (2004), Plasma interaction of Io with its plasma torus, in Jupiter: The Planet, Satellites, and Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, p. 537, Cambridge Univ. Press, New York.
Vasavada, A. R., et al. (1999), Jupiter's visible aurora and Io footprint, J. Geophys. Res., 104, 27,133.
Waite, J. H., Jr., T. E. Cravens, J. U. Kozyra, A. F. Nagy, S. K. Atreya, and R. H. Chen (1983), Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere, J. Geophys. Res., 88, 6143.
Williams, D. J., B. H. Mauk, R. E. McEntire, E. C. Roelof, T. P. Armstrong, B. Wilken, J. G. Roederer, S. M. Krimigis, T. A. Fritz, and L. J. Lanzerotti (1996), Electron beams and ion composition measured at Io and in its torus, Science, 274, 401.