[en] The dominating adaptative character of enzymes from cold-evolving organisms is their high turnover number (k(cat)) and catalytic efficiency (k(cat)/K-m), which compensate for the reduction of chemical reaction rates inherent to low temperatures. This optimization of the catalytic parameters can originate from the highly flexible structure of these proteins providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Molecular modelling of the 3-D structure of cold-adapted enzymes reveals that only subtle modifications of their conformation can be related to the structural flexibility. The observed structural features include: 1) the reduction of the number of weak interactions involved in the folded state stability like salt bridges, weakly polar interactions between aromatic side chains, hydrogen bonding, arginine content and charge-dipole interactions in alpha-helices; 2) a lower hydrophobicity of the hydrophobic clusters forming the core of the protein; 3) deletion or substitution of proline residues in loops or turns connecting secondary structures; 4) improved solvent interactions with a hydrophilic surface via additional charged side chains; 5) the occurence of glycine clusters close to functional domains; and 6) a looser coordination of Ca2+ ions. No general rule from the molecular changes observed; rather, each enzyme adopts its own strategy by using one or a combination of these altered interactions. Enzymes from thermophiles reinforce the same type of interactions indicating that there is a continuity in the strategy of protein adaptation to temperature. (C) 1997 Elsevier Science Inc.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Feller, Georges ; Université de Liège - ULiège > Département des sciences de la vie > Labo de biochimie
Arpigny, J. L.
Narinx, E.
Gerday, Charles ; Université de Liège - ULiège > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences)
Language :
English
Title :
Molecular adaptations of enzymes from psychrophilic organisms
Publication date :
1997
Journal title :
Comparative Biochemistry and Physiology. A, Comparative Physiology
1. Arpigny, J.L.; Feller, G.; Davail, S.; Genicot, S.; Narinx, E.; Zekhnini, Z.; Gerday, C. Molecular adaptations of enzymes from thermophilic and psychrophilic organisms. In: Gilles, R. (ed). Advances in Comparative and Environmental Physiology, Vol. 20. Berlin, Heidelberg: Springer-Verlag; 1994:269-295.
2. Arpigny, J.L.; Feller, G.; Gerday, C. Cloning, sequence and structural features of a lipase from the Antarctic facultative psychrophile Psychrobacter immobilis B10. Biochim. Biophys. Acta 1171:331-333;1993.
3. Baldwin, R.L.; Eisenberg, D. Protein stability. In: Oxender, D.L.; Fox, C.F. (eds). Protein Engineering. New York: Liss: 1987:127-148.
4. Betzel, C.; Klupsch, S.; Papendorf, G.; Hastrup, S.; Branner, S.; Wilson, K.S. Cristal structure of the alkaline proteinase Savinase™ from Bacillus lentus at 1.4 A resolution. J. Mol. Biol. 223:427-445;1992.
5. Borders, C.L.; Broadwater, J.A.; Bekeny, P.A.; Salmon, J.A.; Lee, A.S.; Eldridge, A.M.; Pett, V.B. A structural role for arginine in proteins: Multiple hydrogen bonds to backbone carbonyl oxygens. Protein Sci. 3:541-548;1994.
6. Burley, S.K.; Petsko, G.A. Weakly polar interactions in proteins. Adv. Protein Chem. 39:125-189;1988.
7. Clarke, A. Life in cold water: The physiological ecology of polar marine ectotherms. Oceanogr. Mar. Biol. Ann. Rev. 21: 341-453;1983.
9. Davail, S.; Feller, G.; Narinx, E.; Gerday, C. Cold adaptation of proteins. Purification, characterization and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA41. J. Biol. Chem. 269:17448-17453;1994.
10. Feller, G.; Thiry, M.; Gerday, C. Nucleotide sequence of the lipase gene lip2 from the Antarctic psychrotroph Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol. 10:381-388;1991.
11. Feller, G.; Lonhienne, T.; Deroanne, C.; Libioulle, C.; Van Beeumen, J.; Gerday, C. Purification, characterization, and nucleotide sequence of the thermolabile α-amylase from the Antarctic psychrotroph Alteromonas haloplanctis A23. J. Biol. Chem. 267:5217-5221;1992.
12. Feller, G.; Narinx, E.; Arpigny, J.L.; Zekhnini, Z.; Swings, J.; Gerday, C. Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria. Appl. Microbiol. Biotechnol. 41:477-479;1994.
13. Feller, G.; Payan, F.; Theys, F.; Qian, M.; Haser, R.; Gerday, C. Stability and structural analysis of α-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. Eur. J. Biochem. 222:441-447;1994.
14. Feller, G.; Sonnet, P.; Gerday, C. The β-lactamase secreted by the Antarctic psychrophile Psychrobacter immobilis A8. Appl. Environ. Microbiol. 61:4474-4476;1995.
15. Fontana, A. How nature engineers protein (thermo)stability. In: di Frisco, G. (ed). Life Under Extreme Conditions: Biochemical Adaptations. Berlin, Heidelberg: Springer Verlag; 1991:89-113.
16. Franks, F. Biophysics and Biochemistry at Low Temperatures. Cambridge: Cambridge University Press; 1985.
17. Gounot, A.M. Bacterial life at low temperature: Physiological aspects and biotechnological implications. J. Appl. Bacteriol. 71:386-397;1991.
18. Hazel, J.R.; Presser, C.L. Molecular mechanisms of temperature compensation in poikilotherms. Biol. Rev. 54:620-677; 1974.
20. Hol, W.G.J.; van Duijnen, P.T.; Berendsen, H.J.C. The α-helix dipole and the properties of proteins. Nature 273:443-446;1978.
21. Innis, W.E. Interaction of temperature and psychrophilic microorganisms. Annu. Rev. Microbiol. 29:445-465;1975.
22. Jaenicke, R. Proteins at low temperature. Phil. Trans. R. Soc. Lond. B326:535-553;1990.
23. Jaenicke, R. Protein stability and molecular adaptations to extreme conditions. Eur. J. Biochem. 202:715-728;1991.
24. Kobori, H.; Sullivan, C.W.; Shizuya, H. Heat-labile alkaline phosphatase from Antarctic bacteria: Rapid 5′ end-labelling of nucleic acids. Proc. Natl. Acad. Sci. USA 81:6691-6695; 1984.
25. Low, P.S.; Bada, J.L.; Somero, G.N. Temperature adaptations of enzymes: Roles of the free energy, the enthalpy and the entropy of activation. Proc. Natl. Acad. Sci. USA 70:430-432;1973.
26. Matthews, C.R. The mechanism of protein folding. Curr. Opin. Struct. Biol. 1:28-35;1991.
27. Menendez-Arias, L.; Argos, P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in α-helices. J. Mol. Biol. 206:397-406;1989.
28. Merkler, D.J.; Farrington, G.K.; Wedler, F.C. Protein thermostability. Int. J. Peptide Protein Res. 18:430-442;1981.
29. Mohr, P.W.; Krawiec, S. Temperature characteristics and Arrhenius plots for nominal psychrophiles, mesophiles and thermophiles. J. Gen. Microbiol. 121:311-317;1980.
31. Mozhaev, V.V.; Berezin, I.V.; Martinek, K. Structure-stability relationship in proteins: Fundamental tasks and strategy for the development of stabilized enzyme catalysts for biotechnology. CRC Crit. Rev. Biochem. 23:235-281;1988.
32. Mrabet, N.T.; Van den Broeck, A.; Van den Brande, I.; Stanssens, P.; Laroche, Y.; Lambeir, A.M.; Matthijssens, G.; Jenkins, J.; Chiadmi, M.; Van Tilbeurgh, H.; Rey, F.; Janin, J.; Quax, W.J.; Lasters, I.; De Mayer, M.; Wodak, S.J. Arginine residues as stabilizing elements in proteins. Biochemistry 31: 2239-2253;1992.
33. Perutz, M.F.; Raidt, H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature 255: 256-259;1975.
34. Privalov, P.L. Stability of proteins. Adv. Protein Chem. 33: 167-241;1979.
35. Privalov, P.L.; Gills, S.J. Stability of protein structure and hydrophobic interactions. Adv. Protein Chem. 39:191-234; 1988.
36. Rentier-Delrue, F.; Mande, S.C.; Moyens, S.; Terpstra, P.; Mainfroid, V.; Goraj, K.; Hol, W.G.J., Martial, J.A. Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. J. Mol. Biol. 229:85-93;1993.
37. Russel, N.J. Cold adaptation of microorganisms. Phil. Trans. R. Soc. Lond. B326:595-611;1990.
38. Russel, N.J. Physiology and molecular biology of psychrophilic microorganisms. In: Herbert, R.A.; Sharp, R.J. (eds). Molecular Biology and Biotechnology of Extremophiles. London: Blackie; 1992:203-224.
39. Shoemaker, K.R.; Kim, P.S.; York, E.J.; Stewart, J.M.; Baldwin, R.L. Tests of the helix dipole model for the stabilisation of α-helices. Nature 326:563-567;1987.
40. Somero, G.N. Temperature as a selective factor in protein evolution: The adaptational strategy of "compromise." J. Exp. Zool. 194:175-188;1977.
41. Teplyakov, A.V.; Kuranova, I.P.; Harutyunyan, E.H.; Vainshtein, B.K.; Frömmel, C.; Höhne, W.E.; Wilson, K.S. Crystal structure of thermitase at 1.4 Å resolution. J. Mol. Biol. 214:261-279;1990.
42. Tomazic, S.J.; Klibanov, A.M. Why is one Bacillus α-amylase more resistant against irreversible thermoinactivation than another? J. Biol. Chem. 263:3092-3096;1988.
43. Vanhove, M.; Houba, S.; Lamotte-Brasseur, J.; Frère, J.M. Probing the determinants of protein stability: Comparison of class A β-lactamases. Biochem. J. 308:859-864;1995.
44. Walker, J.E.; Wonacott, A.J.; Harris, J.I. Heat stability of a tetrameric enzyme, D-glyceraldehyde-3-phosphate dehydrogenase. Eur. J. Biochem. 108:581-586;1980.
45. Watanabe, K.; Chishiro, K.; Kitamura, K.; Suzuki, Y. Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosidasius KP1006. J. Biol. Chem. 266:24287-24294;1991.
46. Watanabe, K.; Masuda, T.; Ohashi, H.; Mihara, H.; Suzuki, Y. Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Irrefragable proof supporting the proline rule. Eur. J. Biochem. 226:277-283;1994.
47. Wrba, A.; Schweiger, A.; Schultes, V.; Jaenicke, R.; Zavodszky, P. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry 29:7584-7592;1990.
48. Zekhnini, Z. Adaptations moleculaires d'une β-lactamase produite par une bactérie antarctique. Ph.D. thesis, University of Liège, Belgium.
49. Zuber, H. Temperature adaptation of lactate dehydrogenase. Structural, functional and genetic aspects. Biophys. Chem. 29: 171-179;1988.