Hydrogen fluoride total and partial column time series above the Jungfraujoch from long-term FTIR measurements: Impact of the line-shape model, characterization of the error budget and seasonal cycle, and comparison with satellite and model data
[en] Time series of hydrogen fluoride (HF) total columns have been derived from ground-based Fourier transform infrared (FTIR) solar spectra recorded between March 1984 and December 2009 at the International Scientific Station of the Jungfraujoch (Swiss Alps, 46.5°N, 8.0°E, 3580 m asl) with two high resolution spectrometers (one home-made and one Bruker 120-HR). Solar spectra have been inverted with the PROFFIT 9.5 algorithm, using the optimal estimation method. An inter-comparison of HF total columns retrieved with PROFFIT and SFIT-2 – the other reference algorithm in the FTIR community - is performed for the first time. The effect of a Galatry line shape model on HF retrieved total columns and vertical profiles, on the residuals of the fits and on the error budget is also quantified. Information content analysis indicates that, in addition to HF total vertical abundance, three independent stratospheric HF partial columns can be derived from our Bruker spectra. A complete error budget has been established and indicates that the main source of systematic error is linked to HF spectroscopy and that the random error affecting our HF total columns does not exceed 2.5%. Ground-based middle and upper stratospheric HF amounts have been compared to satellite data collected by the HALOE or ACE-FTS instruments. Comparisons of our FTIR HF total and partial columns with runs performed by two 3D numerical models (SLIMCAT and KASIMA) are also included. Finally, FTIR and model HF total and partial columns time series have been analyzed to derive the main characteristics of their seasonal cycles.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Duchatelet, Pierre ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Demoulin, Philippe ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Hase, Frank
Ruhnke, Roland
Feng, Wuhu
Chipperfield, Martyn
Bernath, Peter
Boone, Chris
Walker, Kaley
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Language :
English
Title :
Hydrogen fluoride total and partial column time series above the Jungfraujoch from long-term FTIR measurements: Impact of the line-shape model, characterization of the error budget and seasonal cycle, and comparison with satellite and model data
Publication date :
2010
Journal title :
Journal of Geophysical Research. Atmospheres
ISSN :
2169-897X
eISSN :
2169-8996
Publisher :
American Geophysical Union (AGU), Washington, United States - District of Columbia
Barret, B., et al. (2005), Line narrowing effect on the retrieval of HF and HCl vertical profiles from ground-based FTIR measurements, J. Quant. Spectrosc. Radiat. Transfer, 95, 499-519.
Bernath, P. F., et al. (2005), Atmospheric Chemistry Experiment (ACE): Mission overview, Geophys. Res. Lett., 32, L15S01, doi:10.1029/2005GL022386. (Pubitemid 41398766)
Bian, H., and M. J. Prather (2002), Fast-J2: Accurate simulation of stratospheric photolysis in global chemical models, J. Atmos. Chem., 41, 281-296, doi:10.1023/A:1014980619462. (Pubitemid 34411314)
Bizzarri, B., et al. (2006), Analysis of seasonal and daily mid-latitude tropopause pressure using GPS radio occultation data and NCEP-NCAR reanalyses, in Atmosphere and Climate Studies by Occultation Methods, edited by U. Foelsche et al., pp. 253-263, Springer, Berlin.
Boone, C. D., et al. (2005), Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer, Appl. Opt., 44, 7218-7231, doi: 10.1364/AO.44.007218. (Pubitemid 41811670)
Chipperfield, M. P. (2006), New version of the TOMCAT/SLIMCAT offline chemical transport model: Intercomparison of stratospheric tracer experiments, Q. J. R. Meteorol. Soc., 132, 1179-1203, doi:10.1256/qj.05.51. (Pubitemid 44097070)
Chipperfield, M. P., et al. (1997), On the use of HF as a reference for the comparison of stratospheric observations and models, J. Geophys. Res., 102, 12,901-12,919, doi:10.1029/96JD03964.
Chou, S.-I., D. S. Baer, and R. K. Hanson (1999), Diode laser measurements of He-, Ar-, and N2-broadened HF lineshapes in the first overtone band, J. Mol. Spectrosc, 196, 70-76, doi:10.1006/jmsp.1999.7847.
Coffey, M. T., W. G. Mankin, and A. Goldman (1989), Airborne measurements of stratospheric constituents over Antarctica in the austral spring, 1987: 2. Halogen and nitrogen trace gases, J. Geophys. Res., 94, 16,597-16,613, doi:10.1029/JD094iD14p16597.
Considine, G. D., L. E. Daver, E. E. Remsberg, and J. M. Russell III (1999), Analysis of near-global trends and variability in Halogen Occultation Experiment HF and HCl data in the middle atmosphere, J. Geophys. Res., 104, 24,297-24,308, doi:10.1029/1999JD900497.
De Mazière, M., et al. (2005), The exploitation of ground-based Fourier transform infrared observations for the evaluation of tropospheric trends of greenhouse gases over Europe, Environ. Sci., 2, 283-293, doi:10.1080/15693430500405179.
Dicke, R. (1953), The effect of collision upon the Doppler width of spectral lines, Phys. Rev., 89, 472-473, doi:10.1103/PhysRev.89.472.
Duchatelet, P., et al. (2009), An approach to retrieve information on the carbonyl fluoride (COF2) vertical distribution above Jungfraujoch by FTIR multi-spectrum multi-window fitting, Atmos. Chem. Phys., 9, 9027-9042, doi: 10.5194/acp-9-9027-2009.
Feng, W., et al. (2007), Mid-latitude ozone changes: Studies with a 3-D CTM forced by ERA-40 analyses, Atmos. Chem. Phys., 7, 2357-2369, doi: 10.5194/acp-7-2357-2007.
Fischer, H., et al. (2007), MIPAS: An instrument for atmospheric and climate research, Atmos. Chem. Phys., 7, 8795-8893, doi:10.5194/acpd-7-8795- 2007.
Fu, D., et al. (2009), First global observations of atmospheric COClF from the Atmospheric Chemistry Experiment mission, J. Quant. Spectrosc. Radial Transfer, 110, 974-985, doi:10.1016/j.jqsrt.2009.02.018.
Galatry, L. (1961), Simultaneous effect of Doppler and foreign gas broadening on spectral lines, Phys. Rev., 122, 1218-1223, doi:10.1103/PhysRev. 122.1218.
Gardiner, T., et al. (2008), Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments, Atmos. Chem. Phys., 8, 6719-6727, doi:10.5194/acp-8-6719-2008.
Grooß, J.-U., and J. M. Russell (2005), Technical note: A stratospheric climatology for O3, H2O, CH4, NOx, HCl and HF derived from HALOE measurements, Atmos. Chem. Phys., 5, 2797-2807, doi:10.5194/acp-5-2797-2005.
Gunson, M. R., et al. (1996), The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment: Deployment on the ATLAS Space Shuttle missions, Geophys. Res. Lett., 23, 2333-2336, doi:10.1029/96GL01569.
Hase, F., T. Blumenstock, and C. Paton-Walsh (1999), Analysis of instrumental line shape of high-resolution FTIR-spectrometers using gas cell measurements and a new retrieval software, Appl. Opt., 38, 3417-3422, doi:10.1364/AO.38.003417.
Hase, F., et al. (2004), Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements, J. Quant. Spectrosc. Radial Transfer, 87, 25-52, doi:10.1016/j.jqsrt.2003.12.008. (Pubitemid 38536698)
Ko, M. K. W., N. D. Sze, and D. K. Weisenstein (1989), The role of dynamical and chemical processes in determining the stratospheric concentrations of ozone in one-dimensional and two-dimensional models, J. Geophys. Res., 94, 9889-9896, doi:10.1029/JD094iD07p09889.
Kouker, W., I. Langbein, T. Reddmann, and R. Ruhnke (1999), The Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), version 2, FZK Rep. 6278, Forsch. Karlsruhe, Karlsruhe, Germany.
Mahieu, E., et al. (2008), Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations, Atmos. Chem. Phys., 8, 6199-6221, doi:10.5194/acp-8-6199-2008.
Mélen, F., et al. (1998), Vertical column abundances of COF 2 above the Jungfraujoch Station, derived from ground-based infrared solar observations, J. Atmos. Chem., 29, 119-134, doi:10.1023/A:1005847829686. (Pubitemid 28142904)
Monge-Sanz, B., M. P. Chipperfield, A. Simmons, and S. Uppala (2007), Mean age of air transport in a CTM: Comparison of different ECMWF analyses, Geophys. Res. Lett., 34, L04801, doi:10.1029/2006GL028515. (Pubitemid 47272082)
Montzka, S. A., et al. (1999), Present and future trends in the atmospheric burden of ozone-depleting halogens, Nature, 398, 690-694, doi:10.1038/19499. (Pubitemid 29197643)
Nassar, R., P. F. Bernath, C. D. Boone, S. D. McLeod, R. Skelton, K. A. Walker, C. P. Rinsland, and P. Duchatelet (2006), A global inventory of stratospheric fluorine in 2004 on Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) measurements, J. Geophys. Res., 111, D22313, doi:10.1029/2006JD007395. (Pubitemid 47386243)
Notholt, J., A. Meier, and S. Peil (1995), Total column densities of tropospheric and stratospheric trace gases in the undisturbed arctic summer atmosphere, J. Atmos. Chem., 20, 311-332, doi:10.1007/BF00694500.
O'Doherty, S., et al. (2004), Rapid growth of HFC-134a, HCFC-141b, HCFC-142b and HCFC-22 from AGAGE observations at Cape Grim, Tasmania and Mace Head, Ireland, J. Geophys. Res., 109, D06310, doi: 10.1029/2003JD004277.
Phillips, D. (1962), A technique for the numerical solution of certain integral equations of the first kind, J. ACM, 9, 84-97.
Pine, A. S., and R. Ciurylo (2001), Multispectrum fits of Ar-broadened HF with a generalized asymmetric lineshape: Effects of correlation, hardness, speed dependence, and collision duration, J. Mol. Spectrosc., 208, 180-187, doi:10.1006/jmsp.2001.8375. (Pubitemid 32932485)
Pine, A. S., A. Freid, and J. W. Elkins (1985), Spectral intensities in the fundamental bands of HF and HCl, J. Mol. Spectrosc., 109, 30-45, doi:10.1016/0022-2852(85)90049-9.
Rautian, S. G., and I. I. Sobel'man (1967), The effect of collisions on the Doppler broadening of spectral lines, Sov. Phys. Usp., Engl. Transi, 9, 701-716, doi:10.1070/PU1967v009n05ABEH003212.
Reddmann, T., R. Ruhnke, and W. Kouker (2001), Three-dimensional model simulations of SF6 with mesospheric chemistry, J. Geophys. Res., 106, 14,525-14,537, doi:10.1029/2000JD900700.
Reisinger, A. R., N. B. Jones, W. A. Matthews, and C. P. Rinsland (1994), Southern Hemisphere ground based measurements of carbonyl fluoride (COF 2) and hydrogen fluoride (HF): Partitioning between fluoride reservoir species, Geophys. Res. Lett., 21, 797-800, doi:10.1029/94GL00693. (Pubitemid 24406023)
Rinsland, C. P., J. S. Levine, A. Goldman, N. D. Sze, M. K. W. Ko, and D. W. Johnson (1991), Infrared measurements of HF and HCl total column abundances above Kitt Peak, 1997-1990: Seasonal cycles, long-term increases and comparisons with model calculations, J. Geophys. Res., 96, 15,523-15,540, doi:10.1029/91JD01249.
Rinsland, C. P., et al. (1998), Northern and Southern Hemisphere ground-based infrared measurements of tropospheric carbon monoxide and ethane, J. Geophys. Res., 103, 28,197-28,217, doi:10.1029/98JD02515.
Rinsland, C. P., et al. (2002), Stratospheric HF column abundances above Kitt Peak (31.9°N latitude): Trends from 1977 to 2001 and correlations with stratospheric HCl columns, J. Quant. Spectrosc. Radiat. Transfer, 74, 205-216, doi:10.1016/S0022-4073(01)00233-3. (Pubitemid 34536467)
Rodgers, C. D. (1990), Characterization and error analysis of profiles retrieved from remote sounding instruments, J. Geophys. Res., 95, 5587-5595, doi:10.1029/JD095iD05p05587.
Rodgers, C. D. (2000), Inverse methods for atmospheric sounding: Theory and Practice, Atmos. Oceanic Planet. Phys., vol. 2, World Sci., Hackensack, N. J.
Rothman, L. S., et al. (2005), The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 96, 139-204, doi:10.1016/j.jqsrt.2004.10.008. (Pubitemid 41056933)
Ruhnke, R., W. Kouker, and T. Reddmann (1999), The influence of the OH + NO2 +M reaction on the NOy partitioning in the late Arctic winter 1992/1993 as studied with KASIMA, J. Geophys. Res., 104, 3755-3772, doi:10.1029/1998JD100062.
Russell, J. M., III, L. L. Gordley, J. H. Park, S. R. Drayson, W. D. Hesketh, R. J. Cicerone, A. F. Tuck, J. E. Frederick, J. E. Harries, and P. J. Crutzen (1993), The Halogen Occultation Experiment, J. Geophys. Res., 98, 10,777-10,797, doi:10.1029/93JD00799.
Russell, J. M., III, et al. (1996), Validation of hydrogen fluoride measurements made by the HALOE experiment from the UARS platform, J. Geophys. Res., 101, 10,163-10,174, doi:10.1029/95JD01705.
Sander, S. P., et al. (2003), Chemical kinetics and photochemical data for use in atmospheric studies: Evaluation number 14, JPL Publ., 02-25, 334 pp.
Sen, B., G. C. Toon, J.-F. Blavier, E. L. Fleming, and C. H. Jackman (1996), Balloon-borne observations of midlatitude fluorine abundance, J. Geophys. Res., 101, 9045-9054, doi:10.1029/96JD00227.
Senten, C, et al. (2008), Technical Note: New ground-based FTIR measurements at Ile de La Réunion: Observations, error analysis, and comparisons with independent data, Atmos. Chem. Phys., 8, 3483-3508, doi:10.5194/acp-8-3483-2008.
Stiller, G. P., et al. (2008), Global distribution of mean age of stratospheric air from MIPAS SF6 measurements, Atmos. Chem. Phys., 8, 677-695, doi:10.5194/acp-8-677-2008.
Stolarski, R. S., and R. D. Rundel (1975), Fluorine photochemistry in the stratosphere, Geophys. Res. Lett., 2, 443-444, doi:10.1029/GL002i010p00443.
Tikhonov, A. (1963), On the solution of incorrectly stated problems and a method of regularization, Dokl. Akad. Nauk SSSR, 151, 501-504.
Toon, G. C, C. B. Farmer, P. W. Schaper, L. L. Lowes, and R. H. Norton (1992), Composition measurements of the 1989 Arctic winter stratosphere by airborne infrared solar absorption spectroscopy, J. Geophys. Res., 97, 7939-7961, doi:10.1029/91JD03114.
Wilson, S. R., G. Schuster, and G. Helas (1989), Measurements of COFCl and CCl2O near the tropopause, in Ozone in the Atmosphere, edited by R. D. Bojkov and P. Fabian, pp. 302-305, A. Deepak, Hampton, Va.
Wittke, J., and R. Dicke (1956), Redetermination of the hyperfine splitting in the ground state of atomic hydrogen, Phys. Rev., 103, 620-631, doi:10.1103/PhysRev.103.620.
World Meteorological Organization (WMO) (1957), Definition of the tropopause, WMO Bull., 6, 136.
World Meteorological Organization (WMO) (2007), Scientific Assessment of Ozone Depletion: 2006, WMO Rep. 50, Geneva, Switzerland.
Zander, R. (1975), Présence de HF dans la stratosphère supérieure, C.R. Acad. Sci., Ser. B., 281, 213-214.
Zander, R., et al. (1987), Monitoring of the integrated column of hydrogen fluoride above the Jungfraujoch Station since 1977: The HF/HCl column ratio, J. Atmos. Chem., 5, 385-394, doi:10.1007/BF00113901.
Zander, R., et al. (1992), The 1985 chlorine and fluorine inventories in the stratosphere based on ATMOS observations at 30° north latitude, J. Atmos. Chem., 15, 171-186, doi:10.1007/BF00053758.
Zander, R., P. Rinsland, E. Mahieu, M. R. Gunson, C. B. Farmer, M. C. Abrams, and M. K. W. Ko (1994), Increase of carbonyl fluoride (COF2) in the stratosphere and its contribution to the 1992 budget of inorganic fluorine in the upper stratosphere, J. Geophys. Res., 99, 16,737-16,743, doi:10.1029/94JD01029.