[en] This paper investigates the biohydrogen production by two mesophilic strains, a strict anaerobe (Clostridium butyricum CWBI1009) and a facultative anaerobe (Citrobacter freundii CWBI952). They were cultured in pure and mixed cultures in serum bottles with five different carbon sources. The hydrogen yields of pure C. freundii cultures ranged from 0.09 molH2.molhexose-1 (with sucrose) to 0.24 molH2.molhexose-1 (with glucose). Higher yields were obtained by the pure cultures of Cl. butyricum ranging from 0.44 molH2.molhexose-1 (with sucrose) to 0.69 molH2.molhexose-1 (with lactose). This strain also fermented starch whereas C. freundii did not. However, it consumed the other substrates faster and produced hydrogen earlier than Cl. butyricum. This ability has been used to promote the growth conditions of Cl. butyricum in co-culture with C. freundii, since Cl. butyricum is extremely sensitive to the presence of oxygen which strongly inhibits H2 production. This approach could avoid the addition of any expensive reducing agents in the culture media such as L-cysteine since C. freundii consumes the residual oxygen. Thereafter, co-cultures with glucose and starch were investigated: hydrogen yields decreased from 0.53 molH2.molhexose-1 for pure Cl. butyricum cultures to 0.38 molH2.molhexose
-1 for mixed culture with glucose but slightly increased with starch (respectively 0.69 and 0.73 molH2.molhexose-1). After 48 h of fermentation, metabolites analysis confirmed with microbial observation, revealed that the cell concentration of C. freundii dramatically decreased or was strongly inhibited by the development of Cl. butyricum.
Research Center/Unit :
Centre Wallon de Biologie Industrielle
Disciplines :
Microbiology Biotechnology
Author, co-author :
Beckers, Laurent ✱; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Hiligsmann, Serge ✱; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Hamilton, Christopher ; Université de Liège - ULiège > Centre Wallon de biologie industrielle
Masset, Julien ; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Thonart, Philippe ; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles - Bio-industries
✱ These authors have contributed equally to this work.
Language :
English
Title :
Fermentative hydrogen production by Clostridium butyricum CWBI1009 and Citrobacter freundii CWBI952 in pure and mixed cultures
Publication date :
2010
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Special issue title :
2e journée de réflexion de l'EDT GEPROC : Génie des procédés appliqué aux bio-industries. 16 décembre 2009, Faculté universitaire des Sciences agronomiques, Gembloux, Belgique
Etude de la production d'hydrogène par les bactéries anaérobies chimiotrophes (dark-fermentation)
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique Action de Recherches concertées ARC 07/12 04- ULg- Communauté française FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Énergie
Balat M., 2009. Possible methods for hydrogen production. Energy Sources Part A Recovery Util. Environ. Effects, 31(1),39-50.
Chen S.D. et al., 2008. Batch and continuous biohydrogen production from starch hydrolysate by Clostridium species. Int. J. Hydrogen Energy, 33(7), 1803-1812.
Das D., 2009. Advances in biohydrogen production processes: an approach towards commercialization. Int. J. Hydrogen Energy, 34(17), 7349-7357.
Das D. & Veziroglu T.N., 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy, 26(1), 13-28.
Das D. & Veziroglu T. N., 2008. Advances in biological hydrogen production processes. Int. J. Hydrogen Energy, 33(21),6046-6057.
Davila-Vazquez G. et al., 2008. Fermentative biohydrogen production: trends and perspectives. Rev. Environ. Sci. Biotechnol., 7(1), 27-45.
Hallenbeck P.C., 2009. Fermentative hydrogen production: principles, progress, and prognosis. Int. J. Hydrogen Energy, 34(17), 7379-7389.
Hallenbeck P.C. & Benemann J.R., 2002. Biological hydrogen production; fundamentals and limiting processes. Int. J. Hydrogen Energy, 27(11-12), 1185-1193.
Hamilton C. et al., 2010. Optimization of culture conditions for biological hydrogen production by Citrobacter freundii cwbi952 in batch, sequenced-batch and semicontinuous operating mode. Int. J. Hydrogen Energy, 35(3), 1089-1098.
Hawkes F.R., Dinsdale R., Hawkes D.L. & Hussy I., 2002. Sustainable fermentative hydrogen production: challenges for process optimisation. Int. J. Hydrogen Energy, 27(11-12), 1339-1347.
Heinekey D.M., 2009. Hydrogenase enzymes: recent structural studies and active site models. J. Organomet. Chem., 694(17), 2671-2680.
Holladay J.D., Hu J., King D.L. & Wang Y., 2009. An overview of hydrogen production technologies. Catal. Today, 139(4), 244-260.
Kim S. et al., 2008. Various hydrogenases and formate- dependent hydrogen production in Citrobacter amalonaticus y19. Int. J. Hydrogen Energy, 33(5), 1509-1515.
Kotay S.M. & Das D., 2008. Biohydrogen as a renewable energy resource - prospects and potentials. Int. J. Hydrogen Energy, 33(1), 258-263.
Kotay S.M. & Das D., 2009. Novel dark fermentation involving bioaugmentation with constructed bacterial consortium for enhanced biohydrogen production from pretreated sewage sludge. Int. J. Hydrogen Energy, 34(17),7489-7496.
Kraemer J.T. & Bagley D.M., 2007. Improving the yield from fermentative hydrogen production. Biotechnol. Lett., 29(5), 685-695.
Levin D.B., Pitt L. & Love M., 2004. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy, 29(2), 173-185.
Lin P.Y. et al., 2007. Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int. J. Hydrogen Energy, 32, 1728-1735.
Magnusson L. et al., 2008. Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int. J. Hydrogen Energy, 33(20), 5398-5403.
Masset J. et al., 2010. Effect of ph on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum cwbi1009. Int. J. Hydrogen Energy, 35(8), 3371-3378.
Moriarty P. & Honnery D., 2009. Hydrogen's role in an uncertain energy future. Int. J. Hydrogen Energy, 34(1), 31-39.
Nandi R. & Sengupta S., 1998. Microbial production of hydrogen: an overview. Crit. Rev. Microbiol., 24(1), 61-84.
Nath K. & Das D., 2004a. Biohydrogen production as a potential energy resource - present state-of-art. J. Sci. Ind. Res., 63(9), 729-738.
Nath K. & Das D., 2004b. Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol., 65(5), 520-529.
Nath K., Kumar A. & Das D., 2006. Effect of some environmental parameters on fermentative hydrogen production by enterobacter cloacae dm11. Can. J. Microbiol., 52(6), 525-532.
Oh Y.K. et al., 2008a. Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus y19. Int. J. Hydrogen Energy, 33(5), 1471-1482.
Oh Y.K. et al., 2008b. Carbon and energy balances of glucose fermentation with hydrogen-producing bacterium Citrobacter amalonaticus y19. J. Microbiol. Biotechnol., 18(3),532-538.
Pan C.M.,Fan Y.T.,Zhao P.&Hou H.W.,2008.Ferm entative hydrogen production by the newly isolated Clostridium beijerinckii fanp3. Int. J. Hydrogen Energy, 33(20), 5383-5391.
Ueno Y. et al., 1995. Biological production of hydrogen from cellulose by natural anaerobic microflora. J. Ferment. Bioeng., 79(4), 395-397.
Ying Z. & Yang S.T., 2004. Effect of ph on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J. Biotechnol., 110(2), 143-157.
Yokoi H. et al., 1995. Characteristics of hydrogen production by aciduric enterobacter aerogenes strain ho-39. J. Ferment. Bioeng., 80(6), 571-574.
Yokoi H. et al., 1998. H2 production from starch by a mixed culture of Clostridium butyricum and enterobacter aerogenes. Biotechnol. Lett., 20(2), 143-147.
Yokoi H., Maki R., Hirose J. & Hayashi S., 2002. Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenergy, 22(5), 389-395.
Yuan Z.L., Yang H.J., Zhi X.H. & Shen J.Q., 2008. Enhancement effect of l-cysteine on dark fermentative hydrogen production. Int. J. Hydrogen Energy, 33(22), 6535-6540.