[en] Rosemaryite, ideally NaMnFe(3+)AI(PO4)(3), has been collected in the Buranga pegmatite, Rwanda. A single-crystal structure refinement was performed to R-1 = 4.01 %, in the P2(1)/n space group, with a = 12.001(2), b = 12.396(1), c = 6.329(1) angstrom, beta 114.48(1)degrees, Vol. = 856.9(2) angstrom(3), Z = 4. The crystal structure and cation distributions are similar to those of ferrorosemaryite, NaFe2+Fe3+Al(PO4)(3), and qingheiite, Na2MnMgAl(PO4)(3), but aluminium predominantly occurs in the M(2a) site, not in the M(2b) site as observed in ferrowyllieite, Na2Fe22+Al(PO4)(3). The topologies of the X(1a) and X(1b) crystallographic sites are identical to those found in ferrorosemaryite, and correspond to a distorted octahedron and to a distorted cube, respectively. The [7+1]-coordinated X(2) site is a very distorted gable disphenoid, similar to the A(2)' site of the alluaudite structure. Mossbauer spectra have been obtained from 4.2 to 295 K, and fitted with a model including two Fe3+ and two Fe2+ doublets. The Fe2+ component corresponding to 2/3 of the Fe2+ spectral area and having a smaller quadrupole splitting of 2.63 mm/s at 15 K, is assigned to the Fe2+ on the M(2a) site, and the Fe2+ component with the larger quadrupole splitting of 3.17 mm/s at 15 K, is assigned to the Fe2+ on the M(1) site. Fe3+ is located only at the M(2a) and M(2b) sites, and the Fe3+ component corresponding to 3/4 of the Fe3+ and exhibiting the larger quadrupole spitting of 0.77 mm/s at 15 K, is most likely associated with Fe3+ on the M(2b) site. The infrared spectrum of rosemaryite shows absorption bands at 3450 and 1624 cm(-1), bands that arise from the vibrational modes of H2O and confirm the presence of water in the channels of the wyllieite structure. A comparison of both the Mossbauer spectra and structural data of rosemaryite with those of other phosphates of the alluaudite and wyllieite groups, is also presented.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Hatert, Frédéric ; Université de Liège - ULiège > Département de géologie > Minéralogie et cristallochimie
Hermann, R. P.
Fransolet, André-Mathieu ; Université de Liège - ULiège > Département de géologie > Minéralogie et cristallochimie
Long, G. J.
Grandjean, Fernande ; Université de Liège - ULiège > Département de physique > Département de physique
Language :
English
Title :
A structural, infrared, and Mossbauer spectral study of rosemaryite, NaMnFe3+Al(PO4)(3)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Antenucci, D. (1992): Synthèse et cristallochimie de composés à structure alluaudite. Incidences dans les processus d'altération des phosphates Fe-Mn des pegmatites granitiques. Unpublished Ph. D. Thesis, University of Liège, 259 p.
Antenucci, D., Miehe, G., Tarte, P., Schmahl, W.W., Fransolet, A.-M. (1993): Combined X-ray Rietveld, infrared and Raman study of a new synthetic variety of alluaudite, NaCdIn2(PO4)3. Eur. J. Mineral., 5, 207-213.
Antenucci, D., Fransolet, A.-M., Miehe, G., Tarte, P. (1995): Synthèse et cristallochimie de NaCaCdMg2(PO4)3, phosphate nouveau à structure alluaudite sans cation trivalent. Eur. J. Mineral., 7, 175-181.
Brier, M. (2000): Röntgenographische Kristallstrukturbestimmung zur Elementverteilung in Mischkristallen der Alluaudit-Wyllieit-Gruppe. Unpublished Diploma thesis, University of Stuttgart, 171 p.
Brown, I.D. & Altermatt, D. (1985): Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst., B41, 244-247.
Černý, P. (1991): Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatite deposits. Geosci. Canada, 18(2), 49-67.
Chouaibi, N., Daidouh, A., Pico, C., Santrich, A., Veiga, M.L. (2001): Neutron diffraction, Mössbauer spectrum, and magnetic behavior of Ag2FeMn2(PO4)3 with alluaudite-like structure. J. Solid State Chem., 159, 46-50.
Dowty, E. (1993): Atoms for Windows. Version 2.3. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Farmer, V.C. (1974): The infrared spectra of minerals. Mineralogical Society Monographs, 4, 539 p.
Fransolet, A.-M. (1995): Wyllieite et rosemaryite dans la pegmatite de Buranga, Rwanda. Eur. J. Mineral., 7, 567-575.
Fransolet, A.-M., Antenucci, D., Fontan, F., Keller, P. (1994): New relevant data on the crystal chemistry, and on the genetical problem of alluaudites and wyllieites. Abstracts of the 16th IMA general meeting, Pisa, 125-126.
Fransolet, A.-M., Hatert, F., Fontan, F., (2004): Petrographic evidence for primary hagendorfite in an unusual assemblage of phosphate minerals, Kibingo granitic pegmatite, Rwanda. Can. Min., 42, 697-704.
Guesmi, A. & Driss, A. (2002): AgCo3PO4(HPO4)2. Acta Cryst., C58, i16-i17.
Hatert, F. (2002): Cristallochimie et synthèse hydrothermale d'alluaudites dans le système Na-Mn-Fe-P-O : contribution au problème de la genèse de ces phosphates dans les pegmatites granitiques. Unpublished Ph. D. Thesis, University of Liège, 247 p.
Hatert, F. (2004): Etude cristallochimique et synthèse hydrothermale des alluaudites: contribution nouvelle au problème génétique des phosphates de fer et de manganèse dans les pegmatites granitiques et, partant, à celui de l'évolution de ces gisements. Mém. Acad. royale Sci. Belgique, Cl. Sci., Coll. in-8°, 3ème série, XXI, 96 p.
Hatert, F. (2006): Na1.50Mn2.48Al0.85 (PO4)3, a new synthetic alluaudite-type compound. Acta Cryst., C62, i1 -i2.
Hatert, F., Keller, P., Lissner, F., Antenucci, D., Fransolet, A.-M. (2000): First experimental evidence of alluaudite-like phosphates with high Li-content: the (Na1-xLix)MnFe2 (PO4)3 series (x = 0 to 1). Eur. J. Mineral., 12, 847-857.
Hatert, F., Antenucci, D., Fransolet, A.-M., Liégeois-Duyckaerts, M. (2002): The crystal chemistry of lithium in the alluaudite structure: a study of the (Na1-xLix)CdIn2 (PO4)3 solid solution (x = 0 to 1). J. Solid State Chem., 163, 194-201.
Hatert, F., Hermann, R.P., Long, G.J., Fransolet, A.-M., Grandjean, F. (2003): An X-ray Rietveld, infrared, and Mössbauer spectral study of the NaMn(Fe1-xInx)2 (PO4)3 alluaudite-like solid solution. Am. Mineral., 88, 211-222.
Hatert, F., Long G.J., Hautot, D., Fransolet, A.-M., Delwiche, J., Hubin-Franskin, M.J., Grandjean, F. (2004): A structural, magnetic, and Mössbauer spectral study of several Na-Mn-Fe-bearing alluaudites. Phys. Chem. Mineral., 31, 487-506.
Hatert, F., Lefèvre, P., Fransolet, A.-M., Spirlet, M.-R., Rebbouh, L., Fontan, F., Keller, P. (2005a): Ferrorosemaryite, NaFe2+Fe3+Al(PO4)3, a new phosphate mineral from the Rubindi pegmatite, Rwanda. Eur. J. Mineral., 17, 749-759.
Hatert, F., Rebbouh, L., Hermann, R.P., Fransolet, A.-M., Long, G.J., Grandjean, F. (2005b): Crystal chemistry of the hydrothermally synthesized Na2(Mn1-x Fe2+x)2Fe3+ (PO4)3 alluaudite-type solid solution. Am. Mineral., 90, 653-662.
Hermann, R.P., Hatert, F., Fransolet, A.-M., Long, G.J., Grandjean, F. (2002): Mössbauer spectral evidence for next-nearest neighbor interactions within the alluaudite structure of Na1-xLix, MnFe2(PO4)3. Solid State Sci., 4, 507-513.
Hidouri, M., Lajmi, B., Wattiaux, A., Fournés, L., Darriet, J., Amara, M. B. (2004): Characterization by X-ray diffraction, magnetic susceptibility and Mössbauer spectroscopy of a new alluaudite-like phosphate: Na4CaFe4(PO4)6. J. Solid State Chem., 177, 55-60.
Korzenski, M.B., Schimek, G.L., Kolis, J.W., Long, G.J. (1998): Hydrothermal synthesis, structure, and characterization of a mixed-valent iron (II/III) phosphate, NaFe3.67(PO4)3: a new variation of the alluaudite structure type. J. Solid State Chem., 139, 152-160.
Leroux, F., Mar, A., Payen, C., Guyomard, D., Verbaere, A., Piffard, Y. (1995a): Synthesis and structure of NaMn3(PO4)(HPO4)2, an unoxidized variant of the alluaudite structure type. J. Solid State Chem., 115, 240-246.
Leroux, F., Mar, A., Guyomard, D., Piffard, Y. (1995b): Cation substitution in the alluaudite structure type : synthesis and strucute of AgMn3(PO4)(HPO4)2. J. Solid State Chem., 117, 206-212.
Lii, K.-H. & Shih, P.-F. (1994): Hydrothermal synthesis and crystal structures of NaCo3(PO4)(HPO4)2 and NaCo3(AsO4)(HAsO4)2: synthetic modifications of the mineral alluaudite. Inorg. Chem., 33, 3028-3031.
Moore, P.B. & Ito, J. (1973): Wyllieite, Na2Fe2+2Al(PO4)3, a new species. Mineral. Rec., 4, 131-136.
Moore, P.B. & Ito, J. (1979): Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature. Min. Mag., 43, 227-235.
Moore, P.B. & Molin-Case, J. (1974): Contribution to pegmatite phosphate giant crystal paragenesis: II. The crystal chemistry of wyllieite, Na2Fe2+ 2Al(PO4)3, a primary phase. Am. Mineral., 59, 280-290.
North, A.C.T., Phillips, D.C., Mathews, F.S. (1968): A semi-empirical method of absorption correction. Acta Cryst., A24, 351-359.
Redhammer, G., Tippelt, G., Bernroider, M., Lottermoser, W., Amthauer, G., Roth, G. (2005): Hagendorfite (Na,Ca)MnFe2 PO4)3 from type locality Hagendorf (Bavaria, Germany): crystal structure determination and 57Fe Mössbauer spectroscopy. Eur. J. Mineral., 17, 915-932.
Renner, B. & Lehmann, G. (1986): Correlation of angular and bond length distortion in TiO4 units in crystals. Z. Kristall., 175, 43.59.
Sarp, H. & Černý, R. (2005): Yazganite, NaFe3+2(Mg,Mn) (AsO4)3.H2O, a new mineral: its description and crystal structure. Eur. J. Mineral., 17, 367-373.
Shannon, R.D. (1976): Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., A32, 751-767.
Sheldrick, G.M. (1997): SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wilson, A.J.C. (1992): International Tables for X-ray Crystallography, Vol. C. Kluwer Academic Press, London, 883 p.
Yakubovich, O.V., Massa, W., Gavrilenko, P.G., Dimitrova, O.V (2005): The crystal structure of a new synthetic member in the wyllieite group: Na1.265Mn2+2.690Mn3+ 0.785(PO4)3. Eur. J. Mineral., 17, 741-747.
Zhesheng, M., Nicheng, S., Zhizhong, P, (1983): Crystal structure of a new phosphatic mineral-qingheiite. Sci. Sinica, série B, XXVI(8), 876-884.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.