[en] Rosemaryite, ideally NaMnFe(3+)AI(PO4)(3), has been collected in the Buranga pegmatite, Rwanda. A single-crystal structure refinement was performed to R-1 = 4.01 %, in the P2(1)/n space group, with a = 12.001(2), b = 12.396(1), c = 6.329(1) angstrom, beta 114.48(1)degrees, Vol. = 856.9(2) angstrom(3), Z = 4. The crystal structure and cation distributions are similar to those of ferrorosemaryite, NaFe2+Fe3+Al(PO4)(3), and qingheiite, Na2MnMgAl(PO4)(3), but aluminium predominantly occurs in the M(2a) site, not in the M(2b) site as observed in ferrowyllieite, Na2Fe22+Al(PO4)(3). The topologies of the X(1a) and X(1b) crystallographic sites are identical to those found in ferrorosemaryite, and correspond to a distorted octahedron and to a distorted cube, respectively. The [7+1]-coordinated X(2) site is a very distorted gable disphenoid, similar to the A(2)' site of the alluaudite structure. Mossbauer spectra have been obtained from 4.2 to 295 K, and fitted with a model including two Fe3+ and two Fe2+ doublets. The Fe2+ component corresponding to 2/3 of the Fe2+ spectral area and having a smaller quadrupole splitting of 2.63 mm/s at 15 K, is assigned to the Fe2+ on the M(2a) site, and the Fe2+ component with the larger quadrupole splitting of 3.17 mm/s at 15 K, is assigned to the Fe2+ on the M(1) site. Fe3+ is located only at the M(2a) and M(2b) sites, and the Fe3+ component corresponding to 3/4 of the Fe3+ and exhibiting the larger quadrupole spitting of 0.77 mm/s at 15 K, is most likely associated with Fe3+ on the M(2b) site. The infrared spectrum of rosemaryite shows absorption bands at 3450 and 1624 cm(-1), bands that arise from the vibrational modes of H2O and confirm the presence of water in the channels of the wyllieite structure. A comparison of both the Mossbauer spectra and structural data of rosemaryite with those of other phosphates of the alluaudite and wyllieite groups, is also presented.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Hatert, Frédéric ; Université de Liège - ULiège > Département de géologie > Minéralogie et cristallochimie
Hermann, R. P.
Fransolet, André-Mathieu ; Université de Liège - ULiège > Département de géologie > Minéralogie et cristallochimie
Long, G. J.
Grandjean, Fernande ; Université de Liège - ULiège > Département de physique > Département de physique
Language :
English
Title :
A structural, infrared, and Mossbauer spectral study of rosemaryite, NaMnFe3+Al(PO4)(3)
Antenucci, D. (1992): Synthèse et cristallochimie de composés à structure alluaudite. Incidences dans les processus d'altération des phosphates Fe-Mn des pegmatites granitiques. Unpublished Ph. D. Thesis, University of Liège, 259 p.
Antenucci, D., Miehe, G., Tarte, P., Schmahl, W.W., Fransolet, A.-M. (1993): Combined X-ray Rietveld, infrared and Raman study of a new synthetic variety of alluaudite, NaCdIn2(PO4)3. Eur. J. Mineral., 5, 207-213.
Antenucci, D., Fransolet, A.-M., Miehe, G., Tarte, P. (1995): Synthèse et cristallochimie de NaCaCdMg2(PO4)3, phosphate nouveau à structure alluaudite sans cation trivalent. Eur. J. Mineral., 7, 175-181.
Brier, M. (2000): Röntgenographische Kristallstrukturbestimmung zur Elementverteilung in Mischkristallen der Alluaudit-Wyllieit-Gruppe. Unpublished Diploma thesis, University of Stuttgart, 171 p.
Brown, I.D. & Altermatt, D. (1985): Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst., B41, 244-247.
Černý, P. (1991): Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatite deposits. Geosci. Canada, 18(2), 49-67.
Chouaibi, N., Daidouh, A., Pico, C., Santrich, A., Veiga, M.L. (2001): Neutron diffraction, Mössbauer spectrum, and magnetic behavior of Ag2FeMn2(PO4)3 with alluaudite-like structure. J. Solid State Chem., 159, 46-50.
Dowty, E. (1993): Atoms for Windows. Version 2.3. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Farmer, V.C. (1974): The infrared spectra of minerals. Mineralogical Society Monographs, 4, 539 p.
Fransolet, A.-M. (1995): Wyllieite et rosemaryite dans la pegmatite de Buranga, Rwanda. Eur. J. Mineral., 7, 567-575.
Fransolet, A.-M., Antenucci, D., Fontan, F., Keller, P. (1994): New relevant data on the crystal chemistry, and on the genetical problem of alluaudites and wyllieites. Abstracts of the 16th IMA general meeting, Pisa, 125-126.
Fransolet, A.-M., Hatert, F., Fontan, F., (2004): Petrographic evidence for primary hagendorfite in an unusual assemblage of phosphate minerals, Kibingo granitic pegmatite, Rwanda. Can. Min., 42, 697-704.
Guesmi, A. & Driss, A. (2002): AgCo3PO4(HPO4)2. Acta Cryst., C58, i16-i17.
Hatert, F. (2002): Cristallochimie et synthèse hydrothermale d'alluaudites dans le système Na-Mn-Fe-P-O : contribution au problème de la genèse de ces phosphates dans les pegmatites granitiques. Unpublished Ph. D. Thesis, University of Liège, 247 p.
Hatert, F. (2004): Etude cristallochimique et synthèse hydrothermale des alluaudites: contribution nouvelle au problème génétique des phosphates de fer et de manganèse dans les pegmatites granitiques et, partant, à celui de l'évolution de ces gisements. Mém. Acad. royale Sci. Belgique, Cl. Sci., Coll. in-8°, 3ème série, XXI, 96 p.
Hatert, F. (2006): Na1.50Mn2.48Al0.85 (PO4)3, a new synthetic alluaudite-type compound. Acta Cryst., C62, i1 -i2.
Hatert, F., Keller, P., Lissner, F., Antenucci, D., Fransolet, A.-M. (2000): First experimental evidence of alluaudite-like phosphates with high Li-content: the (Na1-xLix)MnFe2 (PO4)3 series (x = 0 to 1). Eur. J. Mineral., 12, 847-857.
Hatert, F., Antenucci, D., Fransolet, A.-M., Liégeois-Duyckaerts, M. (2002): The crystal chemistry of lithium in the alluaudite structure: a study of the (Na1-xLix)CdIn2 (PO4)3 solid solution (x = 0 to 1). J. Solid State Chem., 163, 194-201.
Hatert, F., Hermann, R.P., Long, G.J., Fransolet, A.-M., Grandjean, F. (2003): An X-ray Rietveld, infrared, and Mössbauer spectral study of the NaMn(Fe1-xInx)2 (PO4)3 alluaudite-like solid solution. Am. Mineral., 88, 211-222.
Hatert, F., Long G.J., Hautot, D., Fransolet, A.-M., Delwiche, J., Hubin-Franskin, M.J., Grandjean, F. (2004): A structural, magnetic, and Mössbauer spectral study of several Na-Mn-Fe-bearing alluaudites. Phys. Chem. Mineral., 31, 487-506.
Hatert, F., Lefèvre, P., Fransolet, A.-M., Spirlet, M.-R., Rebbouh, L., Fontan, F., Keller, P. (2005a): Ferrorosemaryite, NaFe2+Fe3+Al(PO4)3, a new phosphate mineral from the Rubindi pegmatite, Rwanda. Eur. J. Mineral., 17, 749-759.
Hatert, F., Rebbouh, L., Hermann, R.P., Fransolet, A.-M., Long, G.J., Grandjean, F. (2005b): Crystal chemistry of the hydrothermally synthesized Na2(Mn1-x Fe2+x)2Fe3+ (PO4)3 alluaudite-type solid solution. Am. Mineral., 90, 653-662.
Hermann, R.P., Hatert, F., Fransolet, A.-M., Long, G.J., Grandjean, F. (2002): Mössbauer spectral evidence for next-nearest neighbor interactions within the alluaudite structure of Na1-xLix, MnFe2(PO4)3. Solid State Sci., 4, 507-513.
Hidouri, M., Lajmi, B., Wattiaux, A., Fournés, L., Darriet, J., Amara, M. B. (2004): Characterization by X-ray diffraction, magnetic susceptibility and Mössbauer spectroscopy of a new alluaudite-like phosphate: Na4CaFe4(PO4)6. J. Solid State Chem., 177, 55-60.
Korzenski, M.B., Schimek, G.L., Kolis, J.W., Long, G.J. (1998): Hydrothermal synthesis, structure, and characterization of a mixed-valent iron (II/III) phosphate, NaFe3.67(PO4)3: a new variation of the alluaudite structure type. J. Solid State Chem., 139, 152-160.
Leroux, F., Mar, A., Payen, C., Guyomard, D., Verbaere, A., Piffard, Y. (1995a): Synthesis and structure of NaMn3(PO4)(HPO4)2, an unoxidized variant of the alluaudite structure type. J. Solid State Chem., 115, 240-246.
Leroux, F., Mar, A., Guyomard, D., Piffard, Y. (1995b): Cation substitution in the alluaudite structure type : synthesis and strucute of AgMn3(PO4)(HPO4)2. J. Solid State Chem., 117, 206-212.
Lii, K.-H. & Shih, P.-F. (1994): Hydrothermal synthesis and crystal structures of NaCo3(PO4)(HPO4)2 and NaCo3(AsO4)(HAsO4)2: synthetic modifications of the mineral alluaudite. Inorg. Chem., 33, 3028-3031.
Moore, P.B. & Ito, J. (1973): Wyllieite, Na2Fe2+2Al(PO4)3, a new species. Mineral. Rec., 4, 131-136.
Moore, P.B. & Ito, J. (1979): Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature. Min. Mag., 43, 227-235.
Moore, P.B. & Molin-Case, J. (1974): Contribution to pegmatite phosphate giant crystal paragenesis: II. The crystal chemistry of wyllieite, Na2Fe2+ 2Al(PO4)3, a primary phase. Am. Mineral., 59, 280-290.
North, A.C.T., Phillips, D.C., Mathews, F.S. (1968): A semi-empirical method of absorption correction. Acta Cryst., A24, 351-359.
Redhammer, G., Tippelt, G., Bernroider, M., Lottermoser, W., Amthauer, G., Roth, G. (2005): Hagendorfite (Na,Ca)MnFe2 PO4)3 from type locality Hagendorf (Bavaria, Germany): crystal structure determination and 57Fe Mössbauer spectroscopy. Eur. J. Mineral., 17, 915-932.
Renner, B. & Lehmann, G. (1986): Correlation of angular and bond length distortion in TiO4 units in crystals. Z. Kristall., 175, 43.59.
Sarp, H. & Černý, R. (2005): Yazganite, NaFe3+2(Mg,Mn) (AsO4)3.H2O, a new mineral: its description and crystal structure. Eur. J. Mineral., 17, 367-373.
Shannon, R.D. (1976): Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., A32, 751-767.
Sheldrick, G.M. (1997): SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wilson, A.J.C. (1992): International Tables for X-ray Crystallography, Vol. C. Kluwer Academic Press, London, 883 p.
Yakubovich, O.V., Massa, W., Gavrilenko, P.G., Dimitrova, O.V (2005): The crystal structure of a new synthetic member in the wyllieite group: Na1.265Mn2+2.690Mn3+ 0.785(PO4)3. Eur. J. Mineral., 17, 741-747.
Zhesheng, M., Nicheng, S., Zhizhong, P, (1983): Crystal structure of a new phosphatic mineral-qingheiite. Sci. Sinica, série B, XXVI(8), 876-884.