[en] Metallo-beta-lactamases are native zinc enzymes that catalyse the hydrolysis of beta-lactam antibiotics, but are also able to function with cobalt(II) and require one or two nnetal-ions for catalytic activity. The hydrolysis of cefoxitin, cephaloridine and benzylpenicillin catalysed by CoBcII (cobalt-substituted beta-lactamase from Bacillus cereus) has been studied at different pHs and metal-ion concentrations. An enzyme group of pK(a) 6.52 +/- 0.1 is found to be required in its deprotionated form for metal-ion binding and catalysis. The species that results from the loss of one cobalt ion from the enzyme has no significant catalytic activity and is thought to be the mononuclear CoBcII. It appears that dinuclear CoBcII is the active form of the enzyme necessary for turnover, while the mononuclear CoBcII is only involved in substrate binding. The cobalt-substituted enzyme is a more efficient catalyst than the native enzyme for the hydrolysis of some beta-lactam antibiotics suggesting that the role of the metal-ion is predominantly to provide the nucleophilic hydroxide, rather than to act as a Lewis acid to polarize the carbonyl group and stabilize the oxyanion tetrahedral intermediate.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Badarau, Adriana
Damblon, Christian ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie biologique structurale
Page, Michael I
Language :
English
Title :
The activity of the dinuclear cobalt-beta-lactamase from Bacillus cereus in catalysing the hydrolysis of beta-lactams
Frère, J.M., β-Lactamases and bacterial resistance to antibiotics (1995) Mol. Microbiol, 16, pp. 385-395
Galleni, M., Lamotte-Brasseur, J., Rossolini, G.M., Spencer, J., Dideberg, O., Frère, J.M., Standard numbering scheme for class B β-lactamases (2001) Antimicrob Agents Chemother, 45, pp. 660-663
Fabiane, S.M., Sohi, M.K., Wan, T., Payne, D.J., Bateson, J.H., Mitchell, T., Sutton, B.J., Crystal structure of the zinc-dependent β-lactamase from Bacillus cereus at 1.9 Å resolution: Binuclear active site with features of a mononuclear enzyme (1998) Biochemistry, 37, pp. 12404-12411
Orellano, E.G., Girardini, J.E., Cricco, J.A., Ceccarelli, E.A., Vila, A.J., Spectroscopic characterization of a binuclear metal site in Bacillus cereus β-lactamase II (1998) Biochemistry, 37, pp. 10173-10180
Paul-Soto, R., Bauer, R., Frère, J.M., Galleni, M., Meyer-Klaucke, W., Nolting, H., Rossolini, G.M., Adolph, H.W., Mono- and binuclear Zn2+ -β-lactamase. Role of the conserved cysteine in the catalytic mechanism (1999) J. Biol. Chem, 274, pp. 13242-13249
Concha, N.O., Rasmussen, B.A., Bush, K., Herzberg, O., Crystal structure of the wide-spectrum binuclear zinc β-lactamase from Bacteroides fragilis (1996) Structure, 4, pp. 823-836
Paul-Soto, R., Hernadez-Valladares, M., Galleni, M., Bauec, R., Zeppezauer, M., Frète, J.M., Adolph, H.W., Mono- and binuclear Zn2+ -β-lactamase from Bacteroides fragilis: Catalytic and structural roles of the zinc ions (1998) FEBS Lett, 438, pp. 137-140
Yang, Y., Keeney, D., Tang, X., Canfield, N., Rasmussen, B.A., Kinetic properties and metal content of the metallo-β-lactamase CcrA harboring selective amino acid substitutions (1999) J. Biol. Chem, 274, pp. 15706-15711
Wang, Z., Fast, W., Benkovic, S.J., On the mechanism of the Bacteroides fragilis metallo-β-lactamase (1999) Biochemistry, 38, pp. 10013-10023
Laraki, N., Franceschini, N., Rossolini, G.M., Santucci, P., Meunier, C., de Pauw, E., Amicosante, G., Galleni, M., Biochemical characterisation of the Pseudomonas aeruginosa 101/1477 metallo-β-lactamase IMP-1 produced by Escherichia coli (1999) Antimicrob. Agents Chemother, 43, pp. 902-906
Haruta, S., Yamaguchi, H., Yamamoto, E.T., Eriguchi, Y., Nukaga, M., O'Hara, K., Sawai, T., Functional analysis of the active site of a metallo-β-lactamase proliferating in Japan (2000) Antimicrob. Agents Chemother, 44, pp. 2304-2309
Concha, N.O., Janson, C.A., Bowling, P., Pearson, S., Cheever, C.A., Clarke, B.P., Lewis, C., Payne, D.J., Crystal structure of the IMP-1 metallo-β-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: Binding determinants of a potent, broad-spectrum inhibitor (2000) Biochemistry, 39, pp. 4288-4298
Garcia-Saez, I., Hopkins, J., Papamicael, C., Franceschini, N., Amicosante, G., Rossolini, G.M., Galleni, M., Dideberg, O., The 1.5 Å structure of Chryseobacterium meningosepticum zinc β-lactamase in complex with the inhibitor. D-captopril (2003) J. Biol. Chem, 278, pp. 23868-23873
Crowder, M. W. and Walsh, T. R. (1999) Structure and function of metallo-β-lactamases. Recent Res. Dev. Antimicrob. Agents Chemother. 3, 105-132
Hernandez Valladares, M., Felici, A., Weber, G., Adolph, H.W., Zeppezauer, M., Rossolini, G.M., Amicosante, G., Galleni, M., Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-β-lactamase activity and stability (1997) Biochemistry, 36, pp. 11534-11541
Crawford, P.A., Yang, K.W., Sharma, N., Bennett, B., Crowder, M.W., Spectroscopic studies on cobalt(II)-substituted metallo-β-lactamase ImiS from Aeromonas veronii bv. sobria (2005) Biochemistry, 44, pp. 5168-5176
Rasmussen, B.A., Bush, K., Carbapenem hydrolysing β-lactamases (1997) Antimicrob. Agents Chemother, 41, pp. 223-232
Felici, A., Amicosante, G., Oratore, A., Strom, R., Ledeni, P., Joris, B., Fanuel, L., Frère, J.M., An overview of the kinetic parameters of class B β-lactamases (1993) Biochem. J, 291, pp. 151-155
Felici, A., Amicosante, G., Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-β-lactamases (1995) Antimicrob. Agents Chemother, 39, pp. 192-199
Crowder, M.W., Walsh, T.R., Banovic, L., Pettit, M., Spencer, J., Overexpression, purification, and characterization of the cloned metallo-β-lactamase (L1) from Stenotrophomonas maltophilia (1998) Antimicrob. Agents Chemother, 42, pp. 921-926
Mercuri, P.S., Bouillenne, F., Boschi, L., Lammote-Brasseur, J., Amicosante, G., Devreese, B., Van Beeumen, J., Galleni, M., Biochemical characterization of the FEZ-1 metallo-β-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli (2001) Antimicrob. Agents Chemother, 45, pp. 1254-1262
Carfi, A., Duée, E., Galleni, M., Frère, J.M., Dideberg, O., 1.85 Å resolution structure of the zinc (II) β-lactamase from Bacillus cereus (1998) Acta Crystallogr. Sect. D Biol. Crystallogr, 54, pp. 313-323
Carfi, A., Duee, E., Paul-Soto, R., Galleni, M., Frère, J.M., Dideberg, O., X-ray structure of the Zn(II) β-lactamase from Bacteroides fragilis in an orthorhombic crystal form (1998) Acta Crystallogr. Sect. D Biol. Crystallogr, 54, pp. 45-57
Concha, N.O., Rasmussen, B.A., Bush, K., Herzberg, O., Crystal structure of the cadmium- and mercury-substituted metallo-β-lactarnase from Bacteroides fragilis (1997) Protein Sci, 6, pp. 2671-2676
Paul-Soto, R., Zeppezauer, M., Adolph, H.W., Galleni, M., Frère, J.M., Carfi, A., Dideberg, O., Bauer, R., Preference of Cd(II) and Zn(II) for the two metal sites in Bacillus cereus β-lactamase II: A perturbed angular correlation of γ-rays (PAC) spectroscopy study (1999) Biochemistry, 38, pp. 16500-16506
Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Frère, J.M., Dideberg, O., The 3-D structure of a zinc metallo-β-lactamase from Bacillus cereus reveals a new type of protein fold (1995) EMBO J, 14, pp. 4914-4921
de Seny, D., Heinz, U., Wommer, S., Kiefer, M., Meyer-Klaucke, W., Galleni, M., Frère, J.M., Adolph, H.W., Metal ion binding and coordination geometry for wild type and mutants of metallo-β-lactamase from Bacillus cereus 569/H/9 (BcII): A combined thermodynamic, kinetic and spectroscopic approach (2001) J. Biol. Chem, 276, pp. 45065-45078
physiological importance of the mononuclear enzymes (2002) J. Biol. Chem, 277, pp. 24142-24147
Crowder, M.W., Wang, Z., Franklin, S.L., Zovinka, E.P., Benkovic, S.J., Characterization of the metal-binding sites of the β-lactamase from Bacteroides fragilis (1996) Biochemistry, 35, pp. 12126-12132
Fast, W., Wang, Z., Benkovic, S.J., Familial mutations and zinc stoichiometry determine the rate-limiting step of nitrocefin hydrolysis by metallo-β-lactamase from Bacteroides fragilis (2001) Biochemistry, 40, pp. 1640-1650
Bounaga, S., Laws, A.P., Galleni, M., Page, M.I., The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent β-lactamase (1998) Biochem. J, 331, pp. 703-711
Auld, D.S., Removal and replacement of metal ions in metallopepatidases (1995) Methods Enzymol, 248, pp. 228-242
32a Maret, W. and Vallee, B. L. (1993) Cobalt as probe and label of proteins. Methods Enzymol. 226, 52-71
Vila, A.J., Fernandez, C.O., Alkaline transition of Rhus vernicifera stellacyanin, an unusual Blue copper protein (1997) Biochemistry, 36, pp. 10566-10570
33a Guo, J. Q., Wang, S. K., Dong, J., Qiu, H. W., Scott, R. A. and Giedroc, D. P. (1995) X-ray and visible absorption spectroscopy of wild-type and mutant T4 gene 32 proteins: His61, not His81 is the non-thiolate zinc ligand. J. Am. Chem. Soc. 117, 9437-9440
Bertini, I., Johnsson, B.H., Luchinat, C., Pierattelli, R., Vila, A.J., Strategies of signal assignments in paramagnetic metalloproteins. An NMR investigation of the thiocyanate adduct of the cobalt (II) substituted human carbonic anhydrase II (1994) J. Magn. Reson. Ser. B, 104, pp. 230-239
Oz, G., Pountney, D.L., Armitage, I.M., NMR spectroscopic studies of I = 1/2 metal ions in biological systems (1998) Biochem. Cell Biol, 76, pp. 223-234
Bennet, B. and and Holz, R. C. (1997) EPR studies on the mono- and dicobalt(II)-substituted forms of the aminopeptidase from Aeromonas proteolytica. Insight into the catalytic mechanism of dinuclear hydrolases. J. Am. Chem. Soc. 119, 1923-1933
Bauer, R., Adolph, H.W., Andersson, I., Danielsen, E., Formicka, G., Zeppezauer, M., Coordination geometry for cadmium in the catalytic zinc site of horse liver alcohol dehydrogenase: Studies by PAC spectroscopy (1991) Eur. Biophys. J, 20, pp. 215-221
Bicknell, R., Knott-Hunziker, Y., Waley, S.G., The pH-dependence of class B and class C β-lactamases (1983) Biochem. J, 213, pp. 61-66
Baldwin, G.S., Edwards, G.F., Kiener, P.A., Tully, M.J., Waley, S.G., Abraham, E.P., Production of a variant of β-lactamase II with selectively decreased cephalosporinase activity by a mutant of Bacillus cereus 569/H/9 (1980) Biochem. J, 191, pp. 111-116
Wang, Z., Benkovic, S.J., Purification, characterization, and kinetic studies of a soluble Bacteroides fragilis metallo-β- lactamase that provides multiple antibiotic resistance (1998) J. Biol. Chem, 273, pp. 22402-22408
Myers, J.L., Shaw, R.W., Production, purification and spectral properties of metal-dependent β-lactamase from Bacillus cereus (1989) Biochim. Biophys. Acta, 995, pp. 264-272
Garrity, J.D., Bennet, B., Crowder, M.W., Direct evidence that the reaction intermediate of metallo-β-lactamase L1 is metal bound (2005) Biochemistry, 44, pp. 1078-1087
Crawford, P.A., Sharma, N., Cnandrasekar, S., Sigdel, T., Walsh, T.R., Spencer, J., Crowder, M.W., Over-expression, purification, and characterization of metallo-β-lactamase ImiS from Aeromonas veronii bv. sobria (2004) Protein Expression Purif, 36, pp. 272-279
Bicknell, R., Waley, S.G., Cryoenzymology of Bacillus cereus β-lactamase II (1985) Biochemistry, 24, pp. 6876-6887
Bicknell, R., Scharfer, A., Waley, S.G., Auld, D.S., Changes in the coordination geometry of the active-site metal during catalysis of benzylpenicillin hydrolysis by Bacillus cereus β-lactamase II (1986) Biochemistry, 25, pp. 7208-7215
Badarau, A., (2006) Reactivity and inhibition of metallo-β- lactamases, , Ph.D. Thesis, University of Huddersfield, Huddersfield, U.K
Damblon, C., Jensen, M., Ababou, A., Barsukov, I., Papamicael, C., Schofield, C.J., Olsen, L., Roberts, G.C., The inhibitor thiomandelic acid binds to both metal ions in metallo-β-lactamase and induces positive cooperativity in metal binding (2003) J. Biol. Chem, 31, pp. 29240-29251
Rasia, R.M., Vila, A.J., Structural determinants of substrate binding to Buacillus cereus metallo-β-lactamase (2004) J. Biol. Chem, 279, pp. 26046-26051