crustacea; deep-sea; moulting cycle; biomineralisation; symbiosis; iron oxidation
Abstract :
[en] The shrimp Rimicaris exoculata dominates the megafauna of some Mid-Atlantic Ridge hydrothermal vent fields. This species harbours a rich bacterial epibiosis inside its gill chamber. At the 'Rainbow' vent site (36degrees 14.0'N), the epibionts are associated with iron oxide deposits. Investigation of both bacteria and minerals by scanning electron microscopy (SEM) and X-ray microanalysis (EDX) revealed 3 distinct compartments in the gill chamber: (1) the lower pre-branchial chamber, housing bacteria but devoid of minerals; (2) the 'true' branchial chamber, containing the gills and devoid of both bacteria and minerals; and (3) the upper pre-branchial chamber, housing the main ectosymbiotic bacterial community and associated mineral deposits. Our chemical and temperature data indicated that abiotic iron oxidation appears to be kinetically inhibited in the environment of the shrimps, which would explain the lack of iron oxide deposits in the first 2 compartments. We propose that iron oxidation is microbially promoted in the third area. The discrepancy between the spatial distribution of bacteria and minerals suggests that different bacterial metabolisms are involved in the first and third compartments. A possible explanation lies in the modification of physico-chemical conditions downstream of the gills that would reduce the oxygen content and favours the development of bacterial iron-oxidizers in this Fe-II-rich environment. A potential role of such iron-oxidizing symbionts in the shrimp diet is suggested. This would be unusual for hydrothermal ecosystems, in which most previously described symbioses rely on sulphide or methane as an energy source.
Compère, Philippe ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Département des sciences et gestion de l'environnement
Language :
English
Title :
Distribution of bacteria and associated minerals in the gill chamber of the vent shrimp Rimicaris exoculata and related biogeochemical processes
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Allen DE, Seyfried WE (2003) Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400°C, 500 bars. Geochim Cosmochim Acta 67:1531-1542
Batang ZB, Suzuki H (1999) Gill-cleaning mechanisms of the mud-lobster Thalassina anomalia (Decapoda: Thalassinidea: Thalassinidae). J Crustac Biol 19:671-683
Buffle J, De Vitre R (1994) Chemical and biological regulation of aquatic systems. Lewis Publishers, Boca Raton, FL
Casanova B, Brunet M, Segonzac M (1993) L'impact d'une épibiose bactérienne sur la morphologie fonctionnelle de crevettes associées à l'hydrothermalisme médio-Atlantique. Cah Biol Mar 34:573-588
Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N, Caccavo FJ (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36° 14′ N, MAR). Chem Geol 191:345-359
Coale KH, Chin CS, Massoth GJ, Johnson KS, Baker ET (1991) In situ chemical mapping of dissolved iron and manganese in hydrothermal plumes. Nature 352:325-328
Compère P, Jeuniaux C, Goffinet G (2004) Chapter 3, The integument: morphology and biochemistry. In: Forest J, von Vaupel Klein JC (eds) Treatise on zoology 1. Anatomy, taxonomy, biology. Vol Crustacea. Koninklijke Brill, Leiden, p 1-85
Douville E, Charlou JL, Oelkers EH, Bienvenu P and 5 others (2002) The rainbow vent fluids (36° 14′ N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol 184:37-48
Drach P, Tchernigovtzeff C (1967) Sur la méthode de détermination des stades d'intermue et son application générale aux Crustacés. Vie Milieu 18A:595-609
Edwards KJ, McCollom TM, Konishi H, Buseck PR (2003) Seafloor bioalteration of sulphide minerals: results from in situ incubations studies. Geochim Cosmochim Acta 67:2843-2856
Emerson D, Moyer CL (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63:4784-4792
Emerson D, Moyer CL (2002) Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol 68(6):3085-3093
Ferris FG, Hallberg RO, Lyven B, Pedersen K (2000) Retention of strontium, cesium, lead and uranium by bacterial iron oxides from a subterranean environment. Appl Geochem 15:1035-1042
Fortin D, Ferris FG, Scott SD (1998) Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the southern Explorer Ridge in the northeast Pacific Ocean. Am Mineralogist 83:1399-1408
Gebruk AV, Pimenov NV, Savvichev AS (1993) Feeding specialization of bresiliid shrimps in the TAG site hydrothermal community. Mar Ecol Prog Ser 98:247-253
Gebruk AV, Southward EC, Kennedy H, Southward AJ (2000) Food sources, behaviour, and distribution of hydrothermal vent shrimp at the Mid-Atlantic Ridge. J Mar Biol Assoc UK 80:485-499
Gloter A, Zbinden M, Guyot F, Gaill F, Colliex C (2004) Formation and stabilization of mixed valence ferrihydrite on bacterial surfaces from hydrothermal vents. Earth Planet Sci Lett 222:947-957
James RH, Elderfield H (1996) Dissolved and particulate trace metals in hydrothermal plumes at the Mid-Atlantic Ridge. Geophys Res Lett 23:3499-3502
Johnson KS, Childress J, Hessler RR, Sakamoto-Arnold C (1988) Chemical and biological interactions in the Rose Garden hydrothermal vent field. Deep-Sea Res Part A 35:1723-1744
Juniper SK, Tebo BM (1995) Microbe-metal interactions and mineral deposition at hydrothermal vents. In: Karl D (ed) The microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton, FL, p 219-253
Juniper SK, Martineu P, Sarrazin J, Gelinas Y (1995) Microbial mineral floc associated with nascent hydrothermal activity on Coaxial segment, Juan de Fuca Ridge. Geophys Res Lett 22:179-182
Kennedy CB, Scott SD, Ferris FG (2003) Ultrasutructure and potential sub-seaflor evidence of bacteriogenic iron oxide from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean. FEMS Microbiol Ecol 43:247-254
King DW (1998) Role of carbonate speciation on the oxidation rate of Fe(II) in aquatic systems. Environ Sci Technol 32:2997-3003
Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth-Sci Rev 43:91-121
Lau WW, Jumars PA, Armbrust EV (2002) Genetic diversity of attached bacteria in the hindgut of the deposit-feeding shrimp Neotrypaea (formerly Callianassa) californiensis (Decapoda: Thalassinidae). Microb Ecol 43:455-466
Le Bris N, Sarradin PM, Birot D, Alayse AM (2000) A new chemical analyser for in situ measurement of nitrate and total sulphide over hydrothermal vent biological communities. Mar Chem 72:1-15
Le Bris N, Sarradin PM, Pennec S (2001) A new deep-sea probe for in situ pH measurement in the environment of hydrothermal vent biological communities. Deep-Sea Res Part I 48:1941-1951
Lechaire JP, Shillito B, Frébourg G, Gaill F (2002) Elemental characterization of microorganism granules by EFTEM in the tube wall of a deep-sea vent invertebrate. Biol Cell 94:243-249
Martinez AS (2001) Adaptations morphofonctionnelles des crustacés caridés et brachyoures. La salinité du milieu hydrothermal profond. PhD thesis, University of Montpellier II
Millero FJ, Sotolongo S, Izaguirre M (1987) The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta 51:793-801
Nelson DC, Fischer CR (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In: Karl D (ed) The microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton, FL, p 125-166
Neubauer SC, Emerson D, Megonigal JP (2002) Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl Environ Microbiol 68(8):3988-3995
Polz MF, Cavanaugh CM (1995) Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci USA 92:7232-7236
Polz MF, Robinson JJ, Cavanaugh CM, Van Dover CL (1998) Trophic ecology of massive shrimp aggregations at a mid-Atlantic Ridge hydrothermal vent site. Limnol Oceanogr 43:1631-1638
Pond DW, Dixon DR, Bell MV, Fallick AE, Sargent JR (1997) Occurrence of 16:2(n-4) and 18:2(n-4) fatty acids in the lipids of the hydrothermal vent shrimps Rimicaris exoculata and Alvinocaris markensis: nutritional and trophic implications. Mar Ecol Prog Ser 156:167-174
Rawlings DE, Kusano T (1994) Molecular genetics of Thiobacillus ferrooxidans. Microbiol Rev 58:39-55
Rieley G, Van Dover CL, Hedrick DB, Eglinton G (1999) Trophic ecology of Rimicaris exoculata: a combined lipid abundance/stable isotope approach. Mar Biol 133:495-499
Sarradin PM, Caprais JC, Briand P, Gaill F, Shillito B, Desbruyères D (1998) Chemical and thermal description of the environment of the Genesis hydrothermal vent community (13°N, EPR). Cah Biol Mar 39:159-167
Segonzac M (1992) Les peuplements associés à l'hydrothermalisme océanique du Snake Pit (dorsale médio- Atlantique, 23°N, 3480 m): composition et microdistribution de la mégafaune. CR Acad Sci Sér III 314:593-600
Segonzac M, de Saint-Laurent M, Casanova B (1993) L'énigme du comportement trophique des crevettes Alvinocarididae des sites hydrothermaux de la dorsale médio-atlantique. Cah Biol Mar 34:535-571
Shillito B, Jollivet D, Sarradin PM, Rodier P, Lallier F, Desbruyères D, Gaill F (2001) Temperature resistance of Hesiolyra bergi, a polychaetous annelid living on vent smoker walls. Mar Ecol Prog Ser 216:141-149
Straub KL, Benz M, Schinck B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34:181-186
Suzuki H, McLay CL (1998) Gill-cleaning mechanisms of Paratya curvirostris (Caridea: Atyidae) and comparison with seven species of Japanese atyid shrimps. J Crustac Biol 18:253-270
Van Dover CL, Fry B, Grassle JF, Humphris SE, Rona PA (1988) Feeding biology of the shrimp Rimicaris exoculata at hydrothermal vents on the Mid-Atlantic Ridge. Mar Biol 98:209-216
Van Dover CL, Humphris SE, Fornari D, Cavanaugh CM and 23 others (2001) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294:818-823
Vernet G, Charmentier-Daures M (1994) Mue, autotomie et régénération. In: Forest J (ed) Traité de zoologie 7, Crustacés (1), Morphologie, physiologie, reproduction, embryologie. Masson, Paris, p 107-194
Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris S, Zierenberg R, Mullineaux L, Thomson R (eds) Seafloor hydrothermal systems. Physical, chemical, biological and geological interactions. American Geophysical Union, Washington, p 222-247
Williams AB, Rona PA (1986) Two new caridean shrimps (Bresiliidae) from a hydrothermal field on the Mid-Atlantic Ridge. J Crustac Biol 6:446-462
Wirsen CO, Jannasch HW, Molyneaux SJ (1993) Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites. J Geophys Res B 98:9693-9703
Zbinden M, Cambon-Bonavita MA (2003) Occurrence of Deferribacterales and Entomoplasmatales in the deep-sea shrimp Rimicaris exoculata gut. FEMS Microbiol Ecol 46:23-30
Zbinden M, Martinez I, Guyot F, Cambon-Bonavita MA, Gaill F (2001) Zinc-iron sulphide mineralization in tubes of hydrothermal vent worms. Eur J Mineral 13:653-658
Zbinden M, Le Bris N, Compère P, Martinez I, Guyot F, Gaill F (2003) Mineralogical gradients associated with alvinellids at deep-sea hydrothermal vents. Deep-Sea Res Part I 50:269-280
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.