[en] On the basis of the original lead neocryptolepine or 5-methyl-5H-indolo[2,3-b]quinoline, an alkaloid from Cryptolepis sanguinolenta, derivatives were prepared using a biradical cyclization methodology. Starting from easily accessible educts, this approach allowed the synthesis of hitherto unknown compounds with a varied substitution pattern. As a result of steric hindrance, preferential formation of the 3-substituted isomers over the 1-substituted isomers was observed when cyclizing N-(3-substituted-phenyl)-N'-[2-(2-trimethylsilylethynyl)phenyl]carbodiimides. All compounds were evaluated for their activity against chloroquine-sensitive as well as chloroquine-resistant Plasmodium falciparum strains, for their activity against Trypanosoma brucei and T. cruzi, and for their cytotoxicity on human MRC-5 cells. Mechanisms of action were investigated by testing heme complexation using ESI-MS, inhibition of beta-hematin formation, DNA interactions (DNA-methyl green assay and linear dichroism), and inhibition of human topoisomerase II. Neocryptolepine derivatives with a higher antiplasmodial activity and a lower cytotoxicity than the original lead have been obtained. This selective antiplasmodial activity was associated with inhibition of beta-hematin formation. 2-Bromoneocryptolepine was the most selective compound with an IC(50) value against chloroquine-resistant P. falciparum of 4.0 microM in the absence of cytotoxicity (IC(50) > 32 microM). Although cryptolepine, a known lead for antimalarials also originally isolated from Cryptolepis sanguinolenta, was more active (IC(50) = 2.0 microM), 2-bromoneocryptolepine showed a low affinity for DNA and no inhibition of human topoisomerase II, in contrast to cryptolepine. Although some neocryptolepine derivatives showed a higher antiplasmodial activity than 2-bromocryptolepine, these compounds also showed a higher affinity for DNA and/or a more pronounced cytotoxicity. Therefore, 2-bromoneocryptolepine is considered as the most promising lead from the present work for new antimalarial agents. In addition, 2-bromo-, 2-nitro-, and 2-methoxy-9-cyanoneocryptolepine exhibited antitrypanosomal activity in the micromolar range in the absence of obvious cytotoxicity.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Jonckers, Tim H M
van Miert, Sabine
Cimanga, Kanyanga
Bailly, Christian
Colson, Pierre ; Université de Liège - ULiège > Département de chimie (sciences) > Département de chimie (sciences)
De Pauw-Gillet, Marie-Claire ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Histologie - Cytologie - Département des sciences biomédicales et précliniques
Newman D.J., Cragg G.M., Snader K.M. (2000) The influence of natural products upon drug discovery. Nat. Prod. Rep. 17:215-234.
Kirby G.C., Paine A., Warhurst D.C., Noamese B.K., Phillipson J.D. (1995) In vitro and in vivo antimalarial activity of cryptolepine, a plant-derived indoloquinoline. Phytother. Res. 9:359-363.
Cimanga K., De Bruyne T., Pieters L., Vlietinck A., Turger C.A. (1997) In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from cryptolepis sanguinolenta. J. Nat. Prod. 60:688-691.
Cimanga K., De Bruyne T., Lasure A., Van Poel B., Pieters L., Claeys M., Vanden Berghe D., Kambu K., Tona L., Vlietinck A. (1996) In vitro biological activities of alkaloids from cryptolepis sanguinolenta. Planta Med. 62:22-27.
Bonjean K., De Pauw-Gillet M.-C., Defresne M.-P., Colson P., Houssier C., Dassonneville L., Bailly C., Greimers R., Wright C., Quetin-Leclercq J., Tits M., Angenot L. (1998) The DNA intercalating alkaloid cryptolepine interferes with topoisomares II inhibits primarily DNA synthesis in B16 melanoma cells. Biochemistry 37:5136-5146.
Bailly C., Laine W., Baldeyrou B., De Pauw-Gillet M.-C., Colson P., Houssier C., Cimanga K., Van Miert S., Vlietinck A.J., Pieters L. (2000) DNA intercalation topoisomerase II inhibition and cytotoxic activity of the plant alkaloid neocryptolepine. Anti-Cancer Drug Des. 15:191-201.
Arzel E., Rocca P., Grellier P., Labaeid M., Frappier F., Guéritte F., Gaspard C., Marsais F., Godard A., Quéguiner G. (2001) New synthesis of benzo-δ-carbolines, cryptolepines, and their salts: In vitro cytotoxic, antiplasmodial, and antitrypanosomal activities of δ-carbolines, benzo-δ-carbolines, and cryptolepines. J. Med. Chem. 44:949-960.
Bierer D.E., Fort D.M., Mendez C.D., Luo J., Imbach P.A., Dubenko L.G., Jolad S.D., Gerber R.E., Litvak J., Lu Q., Zhang P., Reed M.R., Waldeck N., Bruening R.C., Noamesi B.K., Hector R.F., Carlson T.J., King S.R. (1998) Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: Its isolation from cryptolepis sanguinolenta, synthesis, and in vitro and in vivo activities. J. Med. Chem. 41:894-901.
Wright C.W., Addae-Kyereme J., Breen A.G., Brown J.E., Cox M.F., Croft S.L., Gökçek Y., Kendrick H., Phillips R.M., Pollet P.L. (2001) Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents. J. Med. Chem. 44:3187-3194.
Peczynska-Czoch W., Pognan F., Kaczmarek L., Boratynski J. (1994) Synthesis and structure-activity relationship of methyl-substituted indolo[2,3-b]quinolines: Novel cytotoxic, DNA topoisomerase II inhibitors. J. Med. Chem. 37:3503.
Kaczmarek L., Balicki R., Nantka-Namirski P. (1988) Synthesis and antineoplastic properties of some benzo-iso-α-carbolines. Arch. Pharm. 321:463-467.
Alajarín M., Molina P., Vidal A. (1997) Formal total synthesis of the alkaloid cryptotackieine (neocryptolepine). J. Nat. Prod. 60:747-748.
Molina P., Fresneda P.M., Delgado S. (1999) Iminophosphorane-mediated synthesis of the alkaloid cryptotackieine. Synthesis 326-329.
Timári G., Soós T., Hajós G. (1997) A convenient synthesis of two new indoloquinoline alkaloids. Synlett. 1067-1068.
Schmittel M., Steffen J.P., Engels B., Lennartz C. (1998) Two novel thermal biradical cyclizations in theory and experiment: New synthetic routes to 6H-indolo[2,3-b]quinolines and 2-aminoquinolines from enyne-carbodiimides. Angew. Chem., Int. Ed. 37:2371-2373.
Shi C., Zhang Q., Wang K.K. (1999) Biradicals from thermolysis of N-[2-(1,alkynyl)phenyl]-N′-phenylcarbodiimides and their subsequent transformations to 6H-indolo[2,3-b]quinolines. J. Org. Chem. 64:925-932.
Saito T., Ohmori H., Ohkubo T., Motoki S. (1993) Periselective, Lewis acid-induced intramolecular diels - Alder reaction of conjugated carbodiimides: Efficient synthesis of nitrogen heterocycles, indolo[2,3-b]quinolines and pyrido[2,3-b]indole. J. Chem. Soc., Chem. Commun. 1802-1803.
Jacob L.A., Chen B.L., Stec D. (1993) Further studies on the iodination of aryltrimethylsilanes. Synthesis 611-614.
Bennetau B., Dunogues J. (1993) Unusual electrophilic substitution in the aromatic series via organosilicon intermediates. Synlett. 171-176.
Chen C., Lieberman D.R., Larsen R.D., Reamer R.A., Verhoeven T.R., Reider P.J. (1994) Synthesis of the 5-HT1D receptor agonist MK-0462 via a Pd-catalyzed coupling reaction. Tetrahedron Lett. 35:6981-6984.
Fell J.B., Coppola G.M. (1995) A mild and efficient preparation of carbodiimides. Synth. Commun. 25(1):43-47.
Palomo C., Mestres R. (1981) Convenient and improved synthesis of unstable carbodiimides. Synthesis. 373.
Wright C.W., Phillipson J.D., Awe S.O., Kirby G.C., Warhurst D.C., Leclercq J., Angenot L. (1994) The antimalarial action of cryptolepine is unlikely to be due to intercalation wit parasite DNA. The U.K. Association of Pharmaceutical Scientists: Natural Products as Drugs and Medicines , November 18, Abstract; 23.
Egan T.J., Ross D.C., Adams P.A. (1994) Quinoline anti-malarial drugs inhibit spontaneous formation of β-haematin (malaria pigment). FEBS Lett. 352:54-57.
Pandey A.V., Tekwani B.L. (1997) Depolymerization of malarial hemozoin: A novel reaction initiated by blood schizonticidal antimalarials. FEBS Lett. 402:236-240.
Ginsburg H., Famin O., Zhang J., Krugliak M. (1998) Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis of their antimalarial mode of action. Biochem. Pharmacol. 56:1305-1313.
Wright C.W., Addae-Kyereme J., Brown J.E., Tranter D.A. (1997) Evaluation of cryptolepine and some analogues as leads to selective antimalarial agents. J. Pharm. Pharmacol. 49(SUPPL. 4):36.
Burres N.L., Frigo A., Rasmussen R.R., McAlpine J.B. (1992) A colorimetric microassay for the detection of agents that interact with DNA. J. Nat. Prod. 55:1582-1587.
Dassonneville L., Lansiaux A., Wattelet A., Wattez N., Mahieu C., Van Miert S., Pieters L., Bailly C. (2000) Cytotoxicity and cell cycle effects of the plant alkaloids cryptolepine and neocryptolepine: Relation to drug-induced apoptosis. Eur. J. Pharmacol. 409:9-18.
Nenortas E.C., Bodley A.L., Shapiro T.A. (1998) DNA topoisomerases: A new twist for antiparasitic chemotherapy?. Biochim. Biophys. Acta. 1400:349-354.
Weissig V., Vetro-Widenhouse T.S., Rowe T.C. (1997) Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite plasmodium falciparum. DNA Cell Biol. 16:1483-1492.
Fichera M.E., Roos D.S. (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390:407-409.
Wright A., Wang H., Gurrath M., Konig G., Kocak G., Neumann G., Loria P., Foley M., Tilley L. (2001) Inhibition of heme detoxification processes underlies the antimalarial activity of terpene isonitrile compounds from marine sponges. J. Med. Chem. 44:873-885.
Makler M.T., Hinrichs D.J. (1993) Measurement of the lactate dehydrogenase activity of plasmodium falciparum as an assessment of parasitemia. Am. J. Trop. Med. Hyg. 48:205-210.
Girault S., Grellier P., Berecibar A., Maes L., Mouray E., Lemière P., Debreu M.-A., Davioud-Charvet E., Sergheraert C. (2000) Antimalarial, antitrypanosomal, and antileishmanial activities and cytotoxicity of bis(9-amino-6-chloro-2-methoxyacridines): Influence of the linker. J. Med. Chem. 43:2646-2654.
Pagola S., Stephens P.W., Bohle D.S., Kosar A.D., Madsen S.K. (2000) The structure of malaria pigment β-haematin. Nature 404:307-310.
Colson P., Bailly C., Houssier C. (1996) Electric linear dichroism as a new tool to study sequence preference in drug binding to DNA. Biophys. Chem. 58:125-140.