Muylkens, Benoît ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires > Virologie, épidémiologie et pathologie des maladies virales
Epstein, A. L.
Mc Voy, M.
Thiry, Etienne ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires > Virologie, épidémiologie et pathologie des maladies virales
Language :
French
Title :
Réplication, clivage-encapsidation et recombinaison de l'ADN des herpèsvirus
Roizman B, Knipe DM. Herpes simplex viruses and their replication. In: Knipe DM, Howley PM, eds. Fields Virology. Philadelphia: Lippincott Williams and Wilkins, 2001: 2399-459.
Roizman B, Pellett PE. The family of Herpesviridae. In: Knipe DM, Howley PM, eds. Fields Virology. Philadelphia: Lippincott Williams and Wilkins, 2001: 2381-97.
Hayward GS, Jacob RJ, Wadsworth SC, Roizman B. Anatomy of herpes simplex virus DNA: Evidence for four populations of molecules that differ in the relative orientations of their long and short components. Proc Natl Acad Sci USA 1975; 72: 4243-7.
Davison AJ. Structure of the genome termini of varicella-zoster virus. J Gen Virol 1984; 65: 1969-77.
DeMarchi JM, Lu ZQ, Rall G, Kupershmidt S, Ben-Porat T. Structural organization of the termini of the L and S components of the genome of pseudorabies virus. J Virol 1990; 64: 4968-77.
Schynts F, McVoy MA, Meurens F, Detry B, Epstein AL, Thiry E. The Structures of Bovine Herpesvirus I Virion and Concatemeric DNA: Implications for Cleavage and Packaging of Herpesvirus Genomes, 2002, soumis pour publication.
Slobedman B, Simmons A. Concatemeric intermediates of equine herpesvirus type I DNA replication contain frequent inversions of adjacent long segments of the viral genome. Virology 1997; 229: 415-20.
Poffenberger KL, Roizman B. A noninverting genome of a viable herpes simplex virus 1: Presence of head-to-tail linkages in packaged genomes and requirements for circularization after infection. J Virol 1985; 53: 587-95.
Garber DA, Beverley SM, Coen DM. Demonstration of circularization of herpes simplex virus DNA following infection using pulsed field gel electrophoresis. Virology 1993; 197: 459-62.
McVoy MA, Adler SP. Human cytomegalovirus DNA replicates after early circularization by concatemer formation, and inversion occurs within the concatemer. J Virol 1994; 68: 1040-51.
Mocarski ES, Roizman B. Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 1982; 31: 89-97.
Tamashiro JC, Filpula D, Friedmann T, Spector DH. Structure of the heterogeneous L-S junction region of human cytomegalovirus strain AD169 DNA. J Virol 1984; 52: 541-8.
Hammerschmidt W, Ludwig H, Buhk HJ. Specificity of cleavage in replicative-form DNA of bovine herpesvirus 1. J Virol 1988; 62: 135-563.
Marks JR, Spector DH. Replication of the murine cytomegalovirus genome: Structure and role of the termini in the generation and cleavage of concatenates. Virology 1988; 162: 98-107.
McVoy MA, Nixon DE, Adler SP. Circularization and cleavage of guinea pig cytomegalovirus genomes. J Virol 1997; 71: 4209-17.
Yao XD, Matecic M, Elias P. Direct repeats of the herpes simplex virus a sequence promote nonconservative homologous recombination that is not dependent on XPF/ERCC4. J Virol 1997; 71: 6842-9.
Yao XD, Elias P. Recombination during early herpes simplex virus type 1 infection is mediated by cellular proteins. J Biol Chem 2001; 276: 2905-13.
Stow ND, McMonagle EC. Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type 1. Virology 1983; 130: 427-38.
Weller SK, Spadaro A, Schaffer JE, Murray AW, Maxam AM, Schaffer PA. Cloning, sequencing, and functional analysis of oriL, a herpes simplex virus type 1 origin of DNA synthesis. Mol Cell Biol 1985; 5: 930-42.
Jacob RJ, Morse LS, Roizman B. Anatomy of herpes simplex virus DNA. XII. Accumulation of head-to-tail concatemers in nuclei of infected cells and their role in the generation of the four isomeric arrangements of viral DNA. J Virol 1979; 29: 448-57.
Gilbert W, Dressler D. DNA replication: The rolling circle model. Cold Spring Harb Symp Quant Biol 1968; 33: 473-84.
Bataille D, Epstein AL. Herpes simplex virus type 1 replication and recombination. Biochimie 1995; 77: 787-95.
Severini A, Morgan AR, Tovell DR, Tyrrell DL. Study of the structure of replicative intermediates of HSV-1 DNA by pulsed-field gel electrophoresis. Virology 1994; 200: 428-35.
Zhang X, Efstathiou S, Simmons A. Identification of novel herpes simplex virus replicative intermediates by field inversion gel electrophoresis: Implications for viral DNA amplification strategies. Virology 1994; 202: 530-9.
Martinez R, Sarisky RT, Weber PC, Weller SK. Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J Virol 1996; 70: 2075-85.
Severini A, Scraba DG, Tyrrell DL. Branched structures in the intracellular DNA of herpes simplex virus type 1. J Virol 1996; 70: 3169-75.
Bataille D, Epstein AL. Equimolar generation of the four possible arrangements of adjacent L components in herpes simplex virus type 1 replicative intermediates. J Virol 1997; 71: 7736-43.
Challberg MD. A method for identifying the viral genes required for herpesvirus DNA replication. Proc Natl Acad Sci USA 1986; 83: 9094-8.
Olivo PD, Nelson NJ, Challberg MD. Herpes simplex virus DNA replication: The UL9 gene encodes an origin-binding protein. Proc Natl Acad Sci USA 1988; 85: 5414-8.
Bruckner RC, Crute JJ, Dodson MS, Lehman IR. The herpes simplex virus 1 origin binding protein: A DNA helicase. J Biol Chem 1991; 266: 2669-74.
Fierer DS, Challberg MD. Purification and characterization of UL9, the herpes simplex virus type 1 origin-binding protein. J Virol 1992; 66: 3986-95.
Dodson MS, Lehman IR. The herpes simplex virus type I origin binding protein. DNA-dependent nucleoside triphosphatase activity. J Biol Chem 1993; 268: 1213-9.
Lee SS, Lehman IR. Unwinding of the box I element of a herpes simplex virus type 1 origin by a complex of the viral origin binding protein, single-strand DNA binding protein, and single-stranded DNA. Proc Natl Acad Sci USA 1997; 94: 2838-42.
McGeoch DJ, Dalrymple MA, Davison AJ, et al. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 1988; 69: 1531-74.
Purifoy DJ, Lewis RB, Powell KL. Identification of the herpes simplex virus DNA polymerase gene. Nature 1977; 269: 621-3.
Gallo ML, Dorsky DI, Crumpacker CS, Parris DS. The essential 65-kilodalton DNA-binding protein of herpes simplex virus stimulates the virus-encoded DNA polymerase. J Virol 1989; 63: 5023-9.
Bataille D, Epstein AL. Herpes simplex virus type 1 replication and recombination. Biochimie 1995; 77:787-95.
Agut H. Les inhibiteurs nucléosidiques et non nucléosidiques du virus herpès simplex. Virologie 2000; 4: 15-24.
Elion GB, Furman PA, Fyfe JA, de MP, Beauchamp L, Schaeffer HJ. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci USA 1977; 74: 5716-20.
Smith KO, Galloway KS, Kennell WL, Ogilvie KK, Radatus BK. A new nucleoside analog, 9-[[2-hydroxy-1-(hydroxymethyl) ethoxyl]methyl] guanine, highly active in vitro against herpes simplex virus types 1 and 2. Antimicrobial Agents Chemother 1982; 22: 55-61.
Eriksson B, Larsson A, Helgstrand E, Johansson NG, Oberg B. Pyrophosphate analogues as inhibitors of herpes simplex virus type 1 DNA polymerase. Biochim Biophys Acta 1980; 607: 53-64.
Crute JJ, Grygon CA, Hargrave KD, et al. Herpes simplex virus helicase-primase inhibitors are active in animal models of human disease. Nature Med 2002; 8: 386-391.
Kleymann G, Fischer R, Betz UA, et al. New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease. Nature Med 2002; 8: 392-8.
Mocarski ES, Post LE, Roizman B. Molecular engineering of the herpes simplex virus genome: Insertion of a second L-S junction into the genome causes additional genome inversions. Cell 1980; 22: 243-55.
Varmuza SL, Smiley JR. Signals for site-specific cleavage of HSV DNA: Maturation involves two separate cleavage events at sites distal to the recognition sequences. Cell 1985; 41: 793-802.
Vlazny DA, Frenkel N. Replication of herpes simplex virus DNA: Localization of replication recognition signals within defective virus genomes. Proc Natl Acad Sci USA 1981; 78: 742-6.
Deiss LP, Chou J, Frenkel N. Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J Virol 1986; 59: 605-18.
Thomson BJ, Dewhurst S, Gray D. Structure and heterogeneity of the a sequences of human herpesvirus 6 strain variants U1102 and Z29 and identification of human telomeric repeat sequences at the genomic termini. J Virol 1994; 68: 3007-14.
Zimmermann J, Hammerschmidt W. Structure and role of the terminal repeats of Epstein-Barr virus in processing and packaging of virion DNA. J Virol 1995; 69: 3147-55.
Chowdhury SI, Buhk HJ, Ludwig H, Hammerschmidt W. Genomic termini of equine herpesvirus 1. J Virol 1990; 64: 873-80.
McVoy MA, Nixon DE, Adler SP, Mocarski ES. Sequences within the herpesvirus-conserved pac1 and pac2 motifs are required for cleavage and packaging of the murine cytomegalovirus genome. J Virol 1998; 72: 48-56.
Deiss LP, Frenkel N. Herpes simplex virus amplicon: Cleavage of concatemeric DNA is linked to packaging and involves amplification of the terminally reiterated a sequence. J Virol 1986; 57: 933-41.
Hodge PD, Stow ND. Effects of mutations within the herpes simplex virus type 1 DNA encapsidation signal on packaging efficiency. J Virol 2001; 75: 8977-86.
McVoy MA, Nixon DE, Hur JK, Adler SP. The ends on herpesvirus DNA replicative concatemers contain pac2 cis cleavage/packaging elements and their formation is controlled by terminal cis sequences. J Virol 2000; 74: 1587-92.
Newcomb WW, Juhas RM, Thomsen DR, Homa FL, Burch AD, Weller SK, Brown JC. The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol 2001; 75: 10923-32.
Yu D, Weller SK. Herpes simplex virus type 1 cleavage and packaging proteins UL15 and UL28 are associated with B but not C capsids during packaging. J Virol 1998; 72: 7428-39.
Salmon B, Cunningham C, Davison AJ, Harris WJ, Baines JD. The herpes simplex virus type 1 U(L)17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA. J Virol 1998; 72: 3779-88.
McNab AR, Desai P, Person S, et al. The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J Virol 1998; 72: 1060-70.
Ogasawara M, Suzutani T, Yoshida I, Azuma M. Role of the UL25 gene product in packaging DNA into the herpes simplex virus capsid: Location of UL25 product in the capsid and demonstration that it binds DNA. J Virol 2001: 75: 1427-36.
Lamberti C, Weller SK. The herpes simplex virus type 1 cleavage/packaging protein, UL32, is involved in efficient localization of capsids to replication compartments. J Virol 1998; 72: 2463-73.
Adelman K, Salmon B, Baines JD. Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery. Proc Natl Acad Sci USA 2001; 98: 3086-91.
Bogner E, Radsak K, Stinski MF. The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity. J Virol 1998; 72: 2259-64.
Abbotts AP, Preston VG, Hughes M, Patel AH, Stow ND. Interaction of the herpes simplex virus type 1 packaging protein UL15 with full-length and deleted forms of the UL28 protein. J Gen Virol 2000; 81: 2999-3009.
Beard PM, Taus NS, Baines JD. DNA cleavage and packaging proteins encoded by genes U(L)28, U(L)15, and U(L)33 of herpes simplex virus type 1 form a complex in infected cells. J Virol 2002; 76: 4785-91.
Bloss TA, Sugden B. Optimal lengths for DNAs encapsidated by Epstein-Barr virus. J Virol 1994; 68: 8217-22.
Underwood MR, Harvey RJ, Stanat SC, et al. Inhibition of human cytomegalovirus DNA maturation by a benzimidazole ribonucleoside is mediated through the UL89 gene product. J Virol 1998; 72: 717-25.
Zacny VL, Gershburg E, Davis MG, Biron KK, Pagano JS. Inhibition of Epstein-Barr virus replication by a benzimidazole L-riboside: Novel antiviral mechanism of 5.6-dichloro-2-(isopropylamino)-1-beta-L-ribofuranosyl-1H-benzimidazole. J Virol 1999; 73: 7271-7.
van Zeijl M, Fairhurst J, Jones TR, et al. Novel class of thiourea compounds that inhibit herpes simplex virus type 1 DNA cleavage and encapsidation: Resistance maps to the UL6 gene. J Virol 2000; 74: 9054-61.
Buerger I, Reefschlaeger J, Bender W, et al. A novel nonnucleoside inhibitor specifically targets cytomegalovirus DNA maturation via the UL89 and UL56 gene products. J Virol 2001; 75: 9077-86.
Wildy P. Recombination with herpes simplex virus. J Gen Microbiol 1955; 13: 34-46.
Kintner RL, Allan RW, Brandt CR. Recombinants are isolated at high frequency following in vivo mixed ocular infection with two avirulent herpes simplex virus type 1 strains. Arch Virol 1995; 140: 231-44.
Dangler CA, Deaver RE, Kolodziej CM. Genetic recombination between two strains of Aujeszky's disease virus at reduced multiplicity of infection. J Gen Virol 1994; 75: 295-9.
Fujita K, Maeda K, Yokoyama N, Miyazawa T, Kai C, Mikami T. In vitro recombination of feline herpesvirus type 1. Arch Virol 1998; 143: 25-34.
Dohner DE, Adams SG, Gelb LD. Recombination in tissue culture between varicella-zoster virus strains. J Med Virol 1988; 24: 329-41.
Javier RT, Sedarati F, Stevens JG. Two avirulent herpes simplex viruses generate lethal recombinants in vivo. Science 1986; 234: 746-8.
Davison AJ. Evolution of the herpesviruses. Vet Microbiol 2002; 86: 69-88.
Muir WB, Nichols R, Breuer J. Phylogenetic analysis of varicellazoster virus: Evidence of intercontinental spread of genotypes and recombination. J Virol 2002; 76: 1971-9.
Poole LJ, Zong JC, Ciufo DM, et al. Comparison of genetic variability at multiple loci across the genomes of the major subtypes of Kaposi's sarcoma-associated herpesvirus reveals evidence for recombination and for two distinct types of open reading frame K15 alleles at the righthand end. J Virol 1999; 73: 6646-60.
Mocarski ES, Roizman B. Site-specific inversion sequence of the herpes simplex virus genome: Domain and structural features. Proc Natl Acad Sci USA 1981; 78: 7047-51.
Smiley JR, Fong BS, Leung WC. Construction of a double-jointed herpes simplex viral DNA molecule: Inverted repeats are required for segment inversion, and direct repeats promote deletions. Virology 1981; 113: 345-62.
Jenkins FJ, Roizman B. Herpes simplex virus 1 recombinants with noninverting genomes frozen in different isomeric arrangements are capable of independent replication. J Virol 1986; 59: 494-9.
Poffenberger KL, Tabares E, Roizman B. Characterization of a viable, noninverting herpes simplex virus 1 genome derived by insertion and deletion of sequences at the junction of components L and S. Proc Natl Acad Sci USA 1983; 80: 2690-4.
Chou J, Roizman B. Isomerization of herpes simplex virus 1 genome: Identification of the cis-acting and recombination sites within the domain of the a sequence. Cell 1985; 41: 803-11.
Umene K. Recombination of the internal direct repeat element DR2 responsible for the fluidity of the a sequence of herpes simplex virus type 1. J Virol 1991; 65: 5410-6.
Smiley JR, Lavery C, Howes M. The herpes simplex virus type 1 (HSV-1) a sequence serves as a cleavage/packaging signal but does not drive recombinational genome isomerization when it is inserted into the HSV-2 genome. J Virol 1992; 66: 7505-10.
Dutch RE, Zemelman BV, Lehman IR. Herpes simplex virus type 1 recombination: The Uc-DR1 region is required for high-level asequence-mediated recombination. J Virol 1994; 68: 3733-41.
Weber PC, Challberg MD, Nelson NJ, Levine M, Glorioso JC. Inversion events in the HSV-1 genome are directly mediated by the viral DNA replication machinery and lack sequence specificity. Cell 1988; 54: 369-81.
Martin DW, Weber PC. The a sequence is dispensable for isomerization of the herpes simplex virus type 1 genome. J Virol 1996; 70: 8801-12.
Cebrian J, Berthelot N, Laithier M. Genome structure of cottontail rabbit herpesvirus. J Virol 1989; 63: 523-31.
Sarisky RT, Weber PC. Requirement for double-strand breaks but not for specific DNA sequences in herpes simplex virus type 1 genome isomerization events. J Virol 1994; 68: 34-47.
Wohlrab F, Chatterjee S, Wells RD. The herpes simplex virus 1 segment inversion site is specifically cleaved by a virus-induced nuclear endonuclease. Proc Natl Acad Sci USA 1991; 88: 6432-6.
Huang KJ, Zemelman BV, Lehman IR. Endonuclease G, a candidate human enzyme for the initiation of genomic inversion in herpes simplex type 1 virus. J Biol Chem 2002; 277: 21071-9.