Pacyna, J. M., Pacyna, E. G., An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 9, 269-298.
Nriagu, J. O., Pacyna, J. M., Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134-139.
Waalkes, M. P., Cadmium carcinogenesis in review. J. Inorg. Biochem. 2000, 79, 241-244.
Sanita di Toppi, L., Gabbrielli, R., Response to cadmium in higher plants. Environ. Exp. Bot. 1999, 41, 105-130.
Satarug, S., Baker, J. R., Urbenjapol, S., Haswell-Elkins, M. et al., A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 2003, 137, 65-83.
Hart, J. J., Welch, R. M., Norvell, W. A., Kochian, L. V., Characterization of cadmium uptake, translocation and storage in near-isogenic lines of durum wheat that differ in grain cadmium concentration. New Phytol. 2006, 172, 261-271.
Prasad, M. N. V., Cadmium toxicity and tolerance in vascular plants. Environ. Exp. Bot. 1995, 35, 525-545.
Fodor, F., Gáspar, L., Morales, F., Gogorcena, Y. et al., Effects of two iron sources on iron and cadmium allocation in poplar (Populus alba) plants exposed to cadmium. Tree Physiol. 2005, 25, 1173-1180.
Romero-Puertas, M. C., Rodriguez-Serrano, M., Corpas, F. J., Gomez, M. et al., Cadmium-induced subcellular accumulation of O2 - and H2O2 in pea leaves. Plant Cell Environ. 2004, 27, 1122-1134.
Clemens, S., Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006, 88, 1707-1719.
Garnier, L., Simon-Plas, F., Thuleau, P., Agnel, J.-P. et al., Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ. 2006, 29, 1956-1969.
Mendoza-Cozatl, D., Loza-Tavera, H., Hernandez-Navarro, A., Moreno-Sanchez, R., Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 2005, 29, 653-671.
Gong, J. M., Lee, D. A., Schroeder, J. I., Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc. Natl. Acad. Sci. USA 2003, 100, 10118-10123.
Salt, D. E., Smith, R. D., Raskin, I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 643-668.
Laureysens, I., De Temmerman, L., Hastir, T., Van Gysel, M. et al., Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential. Environ. Pollut. 2005, 133, 541-551.
Robinson, B. H., Mills, T. M., Petit, D., Fung, L. E. et al., Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation. Plant Soil 2000, 227, 301-306.
Pulford, I. D., Watson, C., Phytoremediation of heavy metal-contaminated land by trees - a review. Environ. Int. 2003, 29, 529-540.
Madejón, P., Marañon, T., Murillo, J. M., Robinson, B., White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environ. Pollut. 2004, 132, 145-155.
Renaut, J., Hausman, J. F., Wisniewski, M. E., Proteomics and low-temperature studies: Bridging the gap between gene expression and metabolism. Physiol. Plant. 2006, 126, 97-109.
Agrawal, G. K., Yonekura, M., Iwahashi, Y., Iwahashi, H. et al., Systems, trends and perspectives of proteomics in dicot plants. Part III: Unraveling the proteomes influenced by the environment, and at the levels of function and genetic relationships. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 815, 137-145.
Aina, R., Labra, M., Fumagalli, P., Vannini, C. et al., Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ. Exp. Bot. 2007, 59, 381-392.
Sarry, J.-E., Kuhn, L., Ducruix, C., Lafaye, A. et al., The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 2006, 6, 2180-2198.
Roth, U., von Roepenack-Lahaye, E., Clemens, S., Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J. Exp. Bot. 2006, 57, 4003-4013.
Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 1962, 15, 473-479.
Hoagland, D. R., Arnon, D. I., The water culture method for growing plants without soil. Calif. Agric. Exp. Stn. Bull. 1938, 347, 36-39.
Arora, R., Wisniewski, M. E., Accumulation of a 60-kD dehydrin protein in peach xylem tissues and its relationship to cold acclimation. HortScience 1996, 31, 911-915.
Bohler, S., Bagard, M., Oufir, M., Planchon, S. et al., A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 2007, 7, 1584-1599.
Schützendübel, A., Nikolova, P., Rudolf, C., Polle, A., Cadmium and H2O2-induced oxidative stress in Populus x canescens roots. Plant Physiol. Biochem. 2002, 40, 577-584.
Kocheva, K., Lambrev, P., Georgiev, G., Goltsev, V. et al., Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry 2004, 63, 121-124.
Renaut, J., Hoffmann, L., Hausman, J.-F., Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiol. Plant. 2005, 125, 82-94.
Stresser, R. J., Srivastava, A., Tsimilli-Michael, M., in: Yunus, M., Pathre, U., Mohanty, P. (Eds.), Probing Photosynthesis: Mechanisms, Regulation and Adaptation, Taylor & Francis, London, GB 2000, pp. 445-483.
Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y. et al., A large family of class III plant peroxidases. Plant Cell Physiol. 2001, 42, 462-468.
Laskowski, M. J., Dreher, K. A., Gehring, M. A., Abel, S. et al., FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide- binding quinone reductase. Plant Physiol. 2002, 128, 578-590.
Yoshida, A., Rzhetsky, A., Hsu, L. C., Chang, C., Human aldehyde dehydrogenase gene family. Eur. J. Biochem. 1998, 251, 549-557.
Kirch, H. H., Bartels, D., Wei, Y., Schnable, P. S. et al., The ALDH gene superfamily of Arabidopsis. Trends Plant Sci. 2004, 9, 371-377.
Romero-Puertas, M. C., Corpas, F. J., Rodriguez-Serrano, M., Gomez, M. et al., Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J. Plant Physiol. 2007, 164, 1346-1357.
Wolucka, B. A., Van Montagu, M., GDP-mannose 3′,5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J. Biol. Chem. 2003, 278, 47483-47490.
Dominguez-Solis, J. R., Lopez-Martin, M. C., Ager, F. J., Ynsa, M. D. et al., Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol. J. 2004, 2, 469-476.
Franco, O. L., Dias, S. C., Magalhaes, C. P., Monteiro, A. C. S. et al., Effects of soybean Kunitz trypsin inhibitor on the cotton boll weevil (Anthonomus grandis). Phytochemistry 2004, 65, 81-89.
Van Loon, L. C., Van Strien, E. A., The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 1999, 55, 85-97.
Schraudner, M., Ernst, D., Langebartels, C., Sandermann, H., Biochemical-plant responses to ozone. 3. Activation of the defense-related proteins beta-1,3-glucanase and chitinase in tobacco-leaves. Plant Physiol. 1992, 99, 1321-1328.
Neale, A. D., Wahleithner, J. A., Lund, M., Bonnett, H. T. et al., Chitinase, [beta]-1,3-glucanase osmotin, and extensin are expressed in tobacco expiants during flower formation. Plant Cell 1990, 2, 673-684.
Yeh, S., Moffatt, B. A., Griffith, M., Xiong, F. et al., Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol. 2000, 124, 1251-1264.
Jung, Y. C., Lee, H. J., Yum, S. S., Soh, W. Y. et al., Drought-inducible -but ABA-independent- thaumatin-like protein from carrot (Daucus carota L.). Plant Cell Rep. 2005, 24, 366-373.
Metwally, A., Safronova, V. I., Belimov, A. A., Dietz, K. J., Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J. Exp. Bot. 2005, 56, 167-178.
Pell, E. J., Schlagnhaufer, C. D., Arteca, R. N., Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiol. Plant. 1997, 100, 264-273.
Forsthoefel, N. R., Cushman, M. A., Ostrem, J. A., Cushman, J. C., Induction of a cysteine protease cDNA from Mesembryanthemum crystallinum leaves by environmental stress and plant growth regulators. Plant Sci. 1998, 136, 195-206.
Schaller, A., A cut above the rest: The regulatory function of plant proteases. Planta 2004, 220, 183-197.
Xu, F. X., Chye, M. L., Expression of cysteine proteinase during developmental events associated with programmed cell death in brinjal. Plant J. 1999, 17, 321-327.
Pena, L. B., Pasquini, L. A., Tomaro, M. L., Gallego, S. M., Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Sci. 2006, 171, 531-537.
Hajduch, M., Rakwal, R., Agrawal, G. K., Yonekura, M. et al., High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa) leaves: Drastic reductions/ fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins. Electrophoresis 2001, 22, 2824-2831.
Moroney, J. V., Bartlett, S. G., Samuelsson, G., Carbonic anhydrases in plants and algae. Plant Cell Environ. 2001, 24, 141-153.
Forsthoefel, N. R., Vernon, D. M., Cushman, J. C., A salinity-induced gene from the halophyte M. crystallinum encodes a glycolytic enzyme, cofactor-independent phosphoglyceromutase. Plant Mol. Biol. 1995, 29, 213-226.