Mooney B.P., Miernyk J.A., Greenlief M.C., and Thelen J.J. Using quantitative proteomics of Arabidopsis roots and leaves to predict metabolic activity. Physiol Plantarum 128 (2006) 237-250
Satarug S., Baker J.R., Urbenjapol S., Haswell-Elkins M., Reilly P.E.B., Williams D.J., et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137 (2003) 65-83
Connolly E.L., Fett J.P., and Guerinot M.L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14 (2002) 1347-1357
Perfus-Barbeoch L., Leonhardt N., Vavasseur A., and Forestier C. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32 (2002) 539-548
Maser P., Thomine S., Schroeder J.I., Ward J.M., Hirschi K., Sze H., et al. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126 (2001) 1646-1667
Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88 (2006) 1707-1719
Salt D.E., Smith R.D., and Raskin I. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49 (1998) 643-668
Dos Santos Utmazian M.N., Wieshammer G., Vega R., and Wenzel W.W. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut 148 (2007) 155-165
Laureysens I., Blust R., De Temmerman L., Lemmens C., and Ceulemans R. Clonal variation in heavy metal accumulation and biomass production in poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environ Pollut 131 (2004) 485-494
Laureysens I., De Temmerman L., Hastir T., Van Gysel M., and Ceulemans R. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential. Environ Pollut 133 (2005) 541-551
Robinson B.H., Mills T.M., Petit D., Fung L.E., Green S.R., and Clothier B.E. Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227 (2000) 301-306
Unterbrunner R., Puschenreiter M., Sommer P., Wieshammer G., Tlustos P., Zupan M., et al. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut 148 (2007) 107-114
Pulford I.D., and Watson C. Phytoremediation of heavy metal-contaminated land by trees - a review. Environ Int 29 (2003) 529-540
Salt D.E., Prince R.C., Pickering I.J., and Raskin I. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109 (1995) 1427-1433
Cobbett C.S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123 (2000) 825-832
Sanita di Toppi L., and Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot 41 (1999) 105-130
May M.J., Vernoux T., Leaver C., Van Montagu M., and Inze D. Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49 (1998) 649-667
Prasad M.N.V. Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35 (1995) 525-545
Bohler S., Bagard M., Oufir M., Planchon S., Hoffmann L., Jolivet Y., et al. A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 7 (2007) 1584-1599
Renaut J., Hausman J.F., and Wisniewski M.E. Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol Plantarum 126 (2006) 97-109
Aina R., Labra M., Fumagalli P., Vannini C., Marsoni M., Cucchi U., et al. Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59 (2007) 381-392
Kieffer P., Dommes J., Hoffmann L., Hausman J.F., and Renaut J. Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8 (2008) 2514-2530
Roth U., von Roepenack-Lahaye E., and Clemens S. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57 (2006) 4003-4013
Sarry J.E., Kuhn L., Ducruix C., Lafaye A., Junot C., Hugouvieux V., et al. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6 (2006) 2180-2198
Götz C., and Schröder P. Herbicide resistance in Convolvulus and Calystegia - a matter of GST activity?. Proc. Int. Crop Sci. Tech. Congr. Alton, Hampshire, UK, British Crop Protection Council (2005) 169-174
Habig W.H., Pabst M.J., and Jakoby W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249 (1974) 7130-7139
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7 (1976) 248-254
Vanacker H., Carver T.L.W., and Foyer C.H. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117 (1998) 1103-1114
Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann, L. et al. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Proteome Res. 2009;9:400-17.
Lichtenthaler H.K. Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148 (1996) 4-14
Antão C.M., and Malcata F.X. Plant serine proteases: biochemical, physiological and molecular features. Plant Physiol Biochem 43 (2005) 637-650
Wang W., Vinocur B., Shoseyov O., and Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9 (2004) 244-252
Hall J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53 (2002) 1-11
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7 (2002) 405-410
Mittler R., Vanderauwera S., Gollery M., and Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci 9 (2004) 490-498
Hiraga S., Sasaki K., Ito H., Ohashi Y., and Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol 42 (2001) 462-468
Laskowski M.J., Dreher K.A., Gehring M.A., Abel S., Gensler A.L., and Sussex I.M. FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase. Plant Physiol 128 (2002) 578-590
Yoshida A., Rzhetsky A., Hsu L.C., and Chang C. Human aldehyde dehydrogenase gene family. Eur J Biochem 251 (1998) 549-557
Espartero J., Sánchez-Aguayo I., and Pardo J.M. Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol 29 (1995) 1223-1233
Chaffei C., Pageau K., Suzuki A., Gouia H., Ghorbel M.H., and Masclaux-Daubresse C. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45 (2004) 1681-1693
Kawakami N., and Watanabe A. Senescence-specific increase in cytosolic glutamine synthetase and its mRNA in radish cotyledons. Plant Physiol 88 (1988) 1430-1434
Diaz C., Lemaitre T., Christ A., Azzopardi M., Kato Y., Sato F., et al. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiol 147 (2008) 1437-1449
Dominguez-Solis J.R., Lopez-Martin M.C., Ager F.J., Ynsa M.D., Romero L.C., and Gotor C. Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2 (2004) 469-476
Dixon D., Lapthorn A., and Edwards R. Plant glutathione transferases. Genome Biology 3 (2002) 1-10
Nepovim A., Podlipna R., Soudek P., Schroder P., and Vanek T. Effects of heavy metals and nitroaromatic compounds on horseradish glutathione S-transferase and peroxidase. Chemosphere 57 (2004) 1007-1015
Karpinski S., Escobar C., Karpinska B., Creissen G., and Mullineaux P.M. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9 (1997) 627-640
Mauch F., and Dudler R. Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol 102 (1993) 1193-1201
Lyubenova L., Götz C., Golan-Goldhirsh A., and Schröder P. Direct effect of Cd on glutathione S-transferase and glutathione reductase from Calystegia sepium. Int J Phytoremediation 9 (2007) 465-473
Chien H.F., Wang J.W., Lin C.C., and Kao C.H. Cadmium toxicity of rice leaves is mediated through lipid peroxidation. Plant Growth Regulation 33 (2001) 205-213
Aravind P., and Prasad M.N.V. Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43 (2005) 107-116