[en] Persistent viruses disseminate from immune hosts. They must therefore resist neutralization by antibody. Murine gammaherpesvirus-68 (MHV-68) represents an accessible model with which to address how resistance to neutralization is achieved and how overcoming it might improve infection control. The MHV-68 glycoprotein B (gB), like that of other herpesviruses, is a virion protein that is essential for infectivity. As such, it presents a potential neutralization target. In order to test whether virus-induced antibodies reduce virion infectivity by binding to gB, monoclonal antibodies (mAbs) were derived from MHV-68-infected mice. gB-specific mAbs were common, but only an IgM specific for the gB N terminus reduced virion infectivity significantly. It inhibited MHV-68 entry into BHK-21 cells at a post-binding step that was linked closely to membrane fusion. Reducing the mAb to IgM monomers compromised neutralization severely, suggesting that a pentameric structure was crucial to its function. Antibody treatment never blocked BHK-21 cell infection completely and blocked the infection of NMuMG epithelial cells hardly at all. Virions saturated with antibody also remained infectious to mice. Thus, the MHV-68 gB presents at best a very difficult target for antibody-mediated neutralization.
Disciplines :
Microbiology
Author, co-author :
Gillet, Laurent ; Université de Liège - ULiège > Immunologie et vaccinologie
Gill, Michael B
Colaco, Susanna
Smith, Christopher M
Stevenson, Philip G
Language :
English
Title :
Murine gammaherpesvirus-68 glycoprotein B presents a difficult neutralization target to monoclonal antibodies derived from infected mice.
Publication date :
2006
Journal title :
Journal of General Virology
ISSN :
0022-1317
eISSN :
1465-2099
Publisher :
Society for General Microbiology, London, United Kingdom
Adler, H., Messerle, M., Wagner, M. & Koszinowski, U. H. (2000). Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74, 6964-6974.
Akula, S. M., Pramod, N. P., Wang, F.-Z. & Chandran, B. (2001). Human herpesvirus 8 envelope-associated glycoprotein B interacts with heparan sulfate-like moieties. Virology 284, 235-249.
Akula, S. M., Pramod, N. P., Wang, F.-Z. & Chandran, B. (2002). Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108, 407-419.
Austin, C. D., Wen, X., Gazzard, L., Nelson, C., Schaller, R. H. & Scales, S. J. (2005). Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody-drug conjugates. Proc Natl Acad Sci U S A 102, 17987-17992.
Boname, J. M., de Lima, B. D., Lehner, P. J. & Stevenson, P. G. (2004). Viral degradation of the MHC class I peptide loading complex. Immunity 20, 305-317.
Boname, J. M., May, J. S. & Stevenson, P. G. (2005). Murine gammaherpesvirus 68 open reading frame 11 encodes a nonessential virion component. J Virol 79, 3163-3168.
Boppana, S. B., Rivera, L. B., Fowler, K. B., Mach, M. & Britt, W. J. (2001). Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med 344, 1366-1371.
Coleman, H. M., de Lima, B., Morton, V. & Stevenson, P. G. (2003). Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77, 2410-2417.
Cranage, M. P., Kouzarides, T., Bankier, A. T. & 8 other authors (1986). Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO J 5, 3057-3063.
de Lima, B. D., May, J. S. & Stevenson, P. G. (2004). Murine garmmaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 78, 5103-5112.
Dialyna, I. A., Graham, D., Rezaee, R., Blue, C. E., Stavrianeas, N. G., Neisters, H. G. M., Spandidos, D. A. & Blackbourn, D. J. (2004). Anti-HHV-8/KSHV antibodies in infected individuals inhibit infection in vitro. AIDS 18, 1263-1270.
Fenner, F., McAuslan, B. R., Mims, C. A., Sambrook, J. & White, D. O. (1974). The Biology of Animal Viruses, 2nd edn, pp. 408-418. London: Academic Press.
Flaño, E., Kim, I.-J., Woodland, D. L. & Blackman, M. A. (2002). γ-Herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196, 1363-1372.
Fuki, I. V., Meyer, M. E. & Williams, K. J. (2000). Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. Biochem J 351, 607-612.
Gangappa, S., Kapadia, S. B., Speck S. H. & Virgin, H. W., IV (2002). Antibody to a lytic cycle viral protein decreases gamma-herpesvirus latency in B-cell-deficient mice. J Virol 76, 11460-11468.
Gill, M. B., Gillet L., Colaco, S., May, J. S., de Lima, B. D. & Stevenson, P. G. (2006). Murine gammaherpesvirus-68 glycoprotein H-glycoprotein L complex is a major target for neutralizing monoclonal antibodies. J Gen Virol 87, 1465-1475.
Gorman, S., Harvey, N. L., Moro, D., Lloyd, M. L., Voigt, V., Smith, L. M., Lawson, M. A. & Shellam, G. R. (2006). Mixed infection with multiple strains of murine cytomegalovirus occurs following simultaneous or sequential infection of immunocompetent mice. J Gen Virol 87, 1123-1132.
Janz, A., Oezel, M., Kurzeder, C., Mautner, J., Pich, D., Kost M., Hammerschmidt, W. & Delecluse, H.-J. (2000). Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 74, 10142-10152.
Klein, R. J. (1989). Reinfections and site-specific immunity in herpes simplex virus infections. Vaccine 7, 380-381.
Kozuch, O., Reilchel, M., Lasso, J., Remenova, A., Labuda, M., Lysy, J. & Mistrikova, J. (1993). Further isolation of murine herpesviruses from small mammals in southwestern Slovakia. Acta Virol 37, 101-105.
Lopes, F. B., Colaco, S., May, J. S. & Stevenson, P. G. (2004). Characterization of the murine gammaherpesvirus 68 glycoprotein B. J Virol 78, 13370-13375.
Lopper, M. & Compton, T. (2004). Coiled-coil domains in glycoproteins B and H are involved in human cytomegalovirus membrane fusion. J Virol 78, 8333-8341.
May, J. S., Colaco, S. & Stevenson, P. G. (2005a). Glycoprotein M is an essential lytic replication protein of the murine gammaherpesvirus 68. J Virol 79, 3459-3467.
May, J. S., Walker, J., Colaco, S. & Stevenson, P. G. (2005b). The murine gammaherpesvirus 68 ORF27 gene product contributes to intercellular viral spread. J Virol 79, 5059-5068.
May, J. S, Coleman, H. M., Boname, J. M. & Stevenson, P. G. (2005c). Murine gammaherpesvirus-68 ORF28 encodes a non-essential virion glycoprotein. J Gen Virol 86, 919-928.
Moorman, N. J., Lin, C. Y. & Speck S. H. (2004). Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J Virol 78, 10282-10290.
Naranatt, P. P., Akula, S. M. & Chandran, B. (2002). Characterization of γ2-human herpesvirus-8 glycoproteins gH and gL. Arch Virol 147, 1349-1370.
Pantophlet, R. & Burton, D. R. (2006). GP120: target for neutralizing HIV-1 antibodies. Annu Rev Immunol 24, 739-769.
Pereira, L., Ali, M., Kousoulas, K., Huo, B. & Banks, T. (1989). Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinuous residues. Virology 172, 11-24.
Pertel, P. E. (2002). Human herpesvirus 8 glycoprotein B (gB), gH, and gL can mediate cell fusion. J Virol 76, 4390-4400.
Sangster, M. Y., Topham, D. J., D'Costa, S., Cardin, R. D., Marion, T. N., Myers, L. K. & Doherty, P. C. (2000). Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. J Immunol 164, 1820-1828.
Sitki-Green, D., Covington, M. & Raab-Traub, N. (2003). Compartmentalization and transmission of multiple Epstein-Barr virus strains in asymptomatic carriers. J Virol 77, 1840-1847.
Song, M. J., Hwang, S., Wong, W. H., Wu, T.-T., Lee, S., Liao, H.-I. & Sun, R. (2005). Identification of viral genes essential for replication of murine γ-herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci U S A 102, 3805-3810.
Spiekermann, G. M., Finn, P. W., Ward, E. S., Dumont, J., Dickinson, B. L., Blumberg, R. S. & Lencer, W. I. (2002). Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med 196, 303-310.
Stevenson, P. G. & Doherty, P. C. (1998). Kinetic analysis of the specific host response to a murine gammaherpesvirus. J Virol 72, 943-949.
Stevenson, P. G. & Doherty, P. C. (1999). Non-antigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo. J Virol 73, 1075-1079.
Stevenson, P. G. & Efstathiou, S. (2005). Immune mechanisms in murine gammaherpesvirus-68 infection. Viral Immunol 18, 445-456.
Stevenson, P. G., Efstathiou, S., Doherty, P. C. & Lehner, P. J. (2000). Inhibition of MHC class I-restricted antigen presentation by γ2-herpesviruses. Proc Natl Acad Sci U S A 97, 8455-8460.
Stevenson, P. G., May, J. S., Smith, X. G., Marques, S., Adler, H., Koszinowski, U. H., Simas, J. P. & Efstathiou, S. (2002). K3-mediated evasion of CD8+ T cells aids amplification of a latent γ-herpesvirus. Nat Immunol 3, 733-740.
Stewart, J. P., Micali, N., Usherwood, E. J., Bonina, L. & Nash, A. A. (1999). Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gammaherpesvirus vaccination. Vaccine 17, 152-157.
Sunil-Chandra, N. P, Efstathiou, S. & Nash, A. A. (1992a). Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol 73, 3275-3279.
Sunil-Chandra, N. P., Efstathiou, S., Arno, J. & Nash, A. A. (1992b). Virological and pathological features of mice infected with murine gammaherpesvirus 68. J Gen Virol 73, 2347-2356.
Takeda, K., Okuno, T., Isegawa, Y. & Yamanishi, K. (1996). Identification of a variant A-specific neutralizing epitope on glycoprotein B (gB) of human herpesvirus-6 (HHV-6). Virology 222, 176-183.
Thorley-Lawson, D. A. & Poodry, C. A. (1982). Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo. J Virol 43, 730-736.
Turner, A., Bruun, B., Minson, T. & Browne, H. (1998). Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol 72, 873-875.
Vey, M., Schäfer, W., Reis, B., Ohuchi, R., Britt, W., Garten, W., Klenk H.-D. & Radsak K (1995). Proteolytic processing of human cytomegalovirus glycoprotein B (gpUL55) is mediated by the human endoprotease furin. Virology 206, 746-749.
Wang, F.-Z., Akula, S. M., Sharma-Walia, N., Zeng, L. & Chandran, B. (2003a). Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J Virol 77, 3131-3147.
Wang, X, Huong, S.-M., Chiu, M. L., Raab-Traub, N. & Huang, E.-S. (2003b). Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424, 456-461.
Xu, J., Lyons, P. A., Carter, M. D., Booth, T. W. M., Davis-Poynter, N. J., Shellam, G. R. & Scalzo, A. A. (1996). Assessment of antigenicity and genetic variation of glycoprotein B of murine cytomegalovirus. J Gen Virol 77, 49-59.