[fr] Dans de nombreuses espèces d’oiseaux chanteurs (ou passériformes) dont fait partie le canari domestique (Serinus canaria), le comportement de chant est produit à la fois pour défendre soit un territoire soit un partenaire. Le système de contrôle du chant est un réseau nerveux central spécialisé, principalement localisé au niveau du télencéphale et associé au contrôle de l’apprentissage, la perception et la production du chant. Ce comportement est modulé par différents facteurs externes, tels que la testostérone, la photopériode et les interactions sociales. En parallèle avec le comportement de chant, certains des noyaux appartenant au système de contrôle du chant (HVC, RA et Area X) présentent un phénomène de plasticité saisonnière nerveuse fascinante. Le volume de ces noyaux augmente notamment par espacement des cellules, agrandissement de la taille du neuropile et de l’arborisation dendritique et, dans le cas particulier d’HVC, par incorporation de neurones nouveaux-nés. Nous proposons ici une synthèse de la littérature concernant ce phénomène tout à fait particulier; en effet, la régénération des neurones du système nerveux central est considérée comme très limitée chez les mammifères (essentiellement au niveau du bulbe olfactif et de l’hippocampe). L’étude de la neuroplasticité chez l’oiseau chanteur constitue dès lors un modèle tout à fait remarquable et offrant des perspectives nouvelles dans l’étude du cerveau des vertébrés [en] In many songbirds species, wherein we can find the domestic canary (Serinus canaria), singing is generally produced either to defend a territory or to attract a mate. The Song Control System is a neural specialization, mostly located in telencephalic regions of the brain and associated to the control of song learning, perception and production. External factors such as testosterone (T), photoperiod and social cues have been described to modulate singing behaviour. Parallel to the song behaviour, some of the song control system nuclei (HVC, RA and Area X) demonstrate a puzzling amount of seasonal plasticity. Their volumes varies seasonally based on changes in cell spacing, neuropile size, dendritic arborisation and in the case on the nidopallial nucleus HVC on the incorporation of newborn neurons.
We present here a review of this curious phenomenon of adult neuroplasticity associated to a complex behaviour, which doesn’t occur as far as we know in the mammalian adult brain
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Boseret, Géraldine ; Université de Liège - ULiège > Département de sciences des denrées alimentaires > Technologie des denrées alimentaires
Beckers, Jean-François ; Université de Liège - ULiège > Département de sciences fonctionnelles > Physiologie de la reproduction
Language :
French
Title :
Le système de contrôle du chant des passériformes : un modèle d’étude de la plasticité neuronale
Alternative titles :
[en] The song control system of the adult songbird : a model for neuronal plasticity
Publication date :
2010
Journal title :
Annales de Médecine Vétérinaire
ISSN :
0003-4118
eISSN :
1781-3875
Publisher :
ULg - Université de Liège, Liège, Belgium
Volume :
154
Issue :
1
Pages :
48-60
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
NINDS - National Institute of Neurological Disorders and Stroke
Absil P., Pinxten R., Balthazart J., Eens M. Effect of age and testosterone on autumnal neurogenesis in male European starlings (Sturnus vulgaris). Behav. Brain Res., 2003, 143, 15-30.
Alvarez-Borda B., Notebohm F. Gonads and singing play separate, additive roles in new neurons recruitment in adult canary. J. Neurosci., 2002, 22, 8684-8690.
Alvarez-Borda B., Haripal B., Nottebohm F. Timing of brain-derived neurotrophic factor exposure affects life expectancy of new neurons. Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 3957-3961.
Alvarez-Buylla A., Notebohm F. Migration of young neurons in adult avian brain. Nature, 1988, 335, 353-354.
Appeltants D., Ball G.F., Balthazart J. Song activation by testosterone is associated with an increased catecholaminergic innervation of the song control system in female canaries. Neuroscience, 2003, 121, 801-814.
Ball G.F., Auger C.J., Bernard D.J., Charlier T.D., Sartor J.J., Riters L.V., Balt hazart J. Seasonal plasticity in the song control system: multiple brain sites of steroid hormone action and the importance of variation in song behaviour. Ann. N.Y. Acad. Sci., 2004, 1016, 586-610.
Balthazart J., Foidart A., Wilson E.M., Ball G.F. Immunocytochemical localization of androgen receptors in the male songbird and quail brain. J. Comp. Neurol., 1992, 317, 407-420.
Balt hazart J., Foidart A. Brain aromatase and the control of male sexual behavior. J. Steroid Biochem. Mol. Biol., 1993, 44, 521-540.
Benton S., Nelson D.A., Marler P., DeVoogd T.J. Anterior forebrain pathway is needed for stable song expression in adult male white-crowned sparrows (Zonotrichia leucophrys). Behav. Brain Res., 1998, 96, 135-150.
Bernard D.J., Bal G.F. Two histological markers reveal a similar photoperiodic difference in the volume of the high vocal center in male European starlings. J. Comp. Neurol., 1995, 360, 726-734.
Bernard D.J., Eens M., Ball G.F. Age-and behaviour-related variation in volumes of song control nuclei in male European starlings. J. Neurobiol., 1996, 30, 329-339.
Bernard D.J., Bal G.F. Photoperiodic condition modulates the effects of testosterone on song control nuclei volumes in male European starlings. Gen. Comp. Endocrinol., 1997, 105, 276-283.
Bernard D.J, Bentle y G.E., Balt hazart J., Turek F.W., Bal G.F. Androgen receptor, estrogen receptor alpha, and estrogen receptor beta show distinct patterns of expression in forebrain song control nuclei of European starlings. Endocrinology, 1999, 140, 4633-4643.
Boseret G., Carere C., Ball G.J., Balthazart J. Social context affects testosteroneinduced singing and the volume of song control nuclei in male canaries (Serinus canaria). J. Neurobiol., 2006, 66, 1044-1060.
Bottjer S.W., Miesner E.A., Arnold A.P. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science, 1984, 224, 901-903.
Bottjer S.W., Halsema K.A., Brown S.A., Miesner E.A. Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. J. Comp. Neurol., 1989, 279, 312-326.
Bottjer S.W., Johnson F. Circuits, hormones, and learning: vocal behaviour in songbirds. J. Neurobiol., 1997, 33, 602-618.
Boughman J.W. Vocal learning by greater spear-nosed bats. Proc. Biol. Sci., 1998, 265, 227-233.
Brenowitz E.A., Margoliash D., Norden, K.W. An Introduction to birdsong and the avian song system. J. Neurobiol., 1997, 33, 495-500.
Brenowitz E.A., Lent K. Afferent input is necessary for seasonal growth and maintenance of adult avian song control circuits. J. Neurosci., 2001, 21, 2320-2329.
Brown S.D., Johnson F., Bottjer S.W. Neurogenesis in adult canary telencephalon is independent of gonadal hormone levels. J. Neurosci., 1993, 13, 2024-2032.
BrueL - Jungerman E. Rampon C., Laroche S. Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev. Neurosci., 2007, 18, 93-114.
Canady R.A., Burd G.D., DeVoogd T.J., Notebohm F. Effect of testosterone on input received by an identified neuron type of the canary song system: a Golgi/electron microscopy/degeneration study. J. Neurosci., 1988, 8, 3770-3784.
Caro S.P., Lambrec hts M.M., Chastel O., Sharp P.J., Thomas D.W., Balt hazart J. Simultaneous pituitary-gonadal recrudescence in two Corsican populations of male blue tits with asynchronous breeding dates. Horm. Behav., 2006, 50, 347-360.
Chen X., Agate R.J., Itoh Y., Arnold A.P. Sexually dimorphic expression of trkB, a Z-linked gene, in early posthatch zebra finch brain. Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 7730-7745.
Clayton D.H. Role of gene regulation in song circuit development and song learning. J. Neurobiol., 1997, 33, 549-557.
Dawson A., Goldsmith A.R. Sexual maturation in starlings raised on long or short days: changes in hypothalamic gonadotrophin-releasing hormone and plasma LH concentrations. J. Endocrinol., 1989, 123, 189-196.
Dawson A., King V.M., Bentley G.E., Ball G.F. Photoperiodic control of seasonality in birds. J. Biol. Rhythms, 2001, 16, 365-380.
deKloet E.R. Stress in the brain. Eur. J. Pharmacol., 2000, 405, 187-198.
Devoogd T.J., Nottebohm F. Gonadal hormones induce dendritic growth in the adult brain. Science, 1981, 214, 202-204.
Devoogd T.J. Neural constraints on the complexity of avian song. Brain Behav. Evol., 2004, 63, 221-232.
Dewulf V., Botjer S.W. Neurogenesis within the juvenile zebra finch telencephalic ventricular zone: a map of proliferative activity. J. Comp. Neurol., 2005, 481, 70-83.
Ditrich F., Feng Y., Metzdorf R., Gahr M. Estrogen-inducible, sex-specific expression of brainderived neurotrophic factor mRNA in a forebrain song control nucleus of the juvenile zebra finch. Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 8241-8246.
Doupe A.J., Solis M.M. Songand order-selective neurons develop in the songbird anterior forebrain during vocal learning. J. Neurobiol., 1997, 33, 694-709.
Doupe A.J., Konishi M. Songselective auditory circuits in the vocal control system of the zebra finch. Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 11339-11343.
Ebling F.J., Goldsmith A.R., Folet B.K. Plasma prolactin and luteinizing hormone during photoperiodically induced testicular growth and regression in starlings (Sturnus vulgaris). Gen. Comp. Endocrinol., 1982, 48, 485-490.
Foidart A., Lakaye B., Grisar T., Ball G.F., Balt hazart J. Estrogen receptor-beta in quail: cloning, tissue expression and neuroanatomical distribution. J. Neurobiol., 1999, 40, 327-342.
Foster E.F., Mehta R.P., Bottjer S.W. Axonal connections of the medial magnocellular nucleus of the anterior neostriatum in zebra finches. J. Comp. Neurol., 1997, 382, 364-381.
Gahr M., Metzdorf R. Distribution and dynamics in the expression of androgen and estrogen receptors in vocal control systems of songbirds. Brain Res. Bull., 1997, 44, 509-517.
Gahr M. Neural song control system of hummingbirds: comparison to swifts, vocal learning (Songbirds) and nonlearning (Suboscines) passerines, and vocal learning (Budgerigars) and nonlearning (dove, owl, gull, quail, chicken) nonpasserines. J. Comp. Neurol., 2000, 426, 182-196.
Gahr M. Hormone-dependent neural plasticity in the juvenile and adult song system: what makes a successful male? Ann. N.Y. Acad. Sci., 2004, 1016, 684-703.
Gentner T.Q., Hulse S.H., Bentley G.E., Bal G.F. Individual vocal recognition and the effect of partial lesions to HVc on discrimination, learning, and categorization of conspecific song in adult songbirds. J. Neurobiol., 2000, 42, 117-133.
Goldman S.A., Notebohm F. Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. U. S. A., 1983, 80, 2390-2394.
Goldman S.A., Nedergaard M. Newly generated neurons of the adult songbird brain become functionally active in long-term culture. Brain Res. Dev. Brain Res., 1992, 68, 217-223.
Goldsmith A.R., Ivings W.E., Pearce -Kelly A.S., Parry D.M., Plowman G., Nicholls T.J., Follett B.K. Photoperiodic control of the development of the LHRH neurosecretory system of European starlings (Sturnus vulgaris) during puberty and the onset of photorefractoriness. J. Endocrinol., 1989, 122, 255-268.
Godson J.L., Saldanha C.J., Hahn T.P., Soma K.K. Recent advances in behavioral neuroendocrinology: insights from studies on birds. Horm. Behav., 2005, 48, 461-473.
Gulledge C.C., Deviche P. Photoperiod and testosterone independently affect vocal control region volumes in adolescent male songbirds. J. Neurobiol., 1998, 36, 550-558.
Hurley L.L., Wallace A.M., Sartor J.J., Ball G.F. Photoperiodic induced changes in reproductive state in border canaries (Serinus canaria) are associated with marked variation of the hypothalamic gonadrotophin-releasing hormone immunoreactivity and the volume of song control regions. Gen. Comp. Endocrinol., 2008, 158, 10-19.
Jarvis E.D., Notebohm F. Motor-driven gene expression. Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 4097-4102.
Kimpo R.R., Doupe A.J. FOS is induced by singing in distinct neuronal populations in a motor network. Neuron, 1997, 18, 315-325.
Kirn J.R., Notebohm F. Direct evidence for loss and replacement of projection neurons in adult canary brain. J. Neurosci., 1993, 13,1654-1663.
Kirn J.R., Fishman Y., Sasportas K., Alvarez-Buylla A., Nottebohm F. Fate of new neurons in adult canary high vocal center during the first 30 days after their formation. J. Comp. Neurol., 1999, 411, 487-494.
Konishi M. The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z. Tierpsychol., 1965a, 22, 770-778.
Konishi M. Effects of deafening on song development in American robins and black-headed grosbeaks. Z. Tierpsychol., 1965b, 22, 584-599.
Konishi M. The role of auditory feedback in birdsong. Ann. N.Y. Acad. Sci., 2004, 1016, 463-475.
Kubke M.F., Yazaki-Sugiyama Y., Mooney R., Wild J.M. Physiology of neuronal subtypes in the respiratory-vocal integration nucleus retroamigualis of the male zebra finch. J. Neurophysiol., 2005, 94, 2379-2390.
Leitner S., Catc hpole C.K. Syllable repertoire and the size of the song control system in captive canaries (Serinus canaria). J. Neurobiol., 2004, 60, 21-27.
Leitner S., Voigt C., Metzdorf R., Catchpole C.K. Immediate early gene (ZENK, Arc) expression in the auditory forebrain of female canaries varies in response to male song quality. J. Neurobiol., 2005, 64, 275-284.
Louissaint A.Jr, Rao S., Leventhal C., Goldman S.A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron, 2002, 34, 945-960.
Marler P., Peters S., Bal G.F., Dufty A.M.J.r., Wingfield J.C. The role of sex steroids in the acquisition and production of birdsong. Nature, 1988, 336, 770-772.
Marler P. Three models of song learning: evidence from behaviour. J. Neurobiol., 1997, 33, 501-516.
McCasland J.S. Neuronal control of bird song production. J. Neurosci., 1987, 7, 23-39.
Margoliash D. Functional organization of forebrain pathways for song production and perception. J. Neurobiol., 1997, 33, 671-693.
Matsuna ga E., Kato M., Okanoya K. Comparative analysis of gene expressions among avian brains: a molecular approach to the evolution of vocal learning. Brain Res. Bull., 2008, 75, 474-479.
Metzdorf R., Gahr M., Fusani L. Distribution of aromatase, estrogen receptor, and androgen receptor mRNA in the forebrain of songbirds and nonsongbirds. J Comp Neurol, 1999, 407, 115-29.
Moles L.E., Vehrencamp S.L. Songbird cheaters pay a retaliation cost: evidence for auditory conventional signals. Proc. Biol. Sci., 2001, 268, 2013-2019.
Mooney R., Konishi M. Two distinct inputs to an avian song nucleus activate different glutamate receptor subtypes on individual neurons. Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 4075-4078.
Mooney R. Synaptic basis for developmental plasticity in a birdsong nucleus. J. Neurosci., 1992, 12, 2464-2477.
Nastiuk K.L., Clayton D.F. Seasonal and tissue-specific regulation of canary androgen receptor messenger ribonucleic acid. Endocrinology, 1994, 134, 640-649.
Notebohm F., Arnold A.P. Sexual dimorphism in vocal control areas of the songbird brain. Science, 1976, 194, 211-213.
Nottebohm F. T triggers growth of brain vocal control nuclei in adult female canaries. Brain Res., 1980, 189, 429-436.
Notebohm F. A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science, 1981, 214, 1368-1370.
Notebohm F. Developmental and seasonal changes in canary song and their relationship to changes in the anatomy of song control nuclei. Behav. Neural. Biol., 1986, 46, 445-471.
Pinxten R., De Ridder E., Balthazart J., Eens M. Context-dependent effects of castration and testosterone treatment on song in male European starlings. Horm. Behav., 2002, 42, 307-318.
Poole J.H., Tyack P.L., Stoe ger-Horwat h A.S., Watwood S. Animal behaviour: elephants are capable of vocal learning. Nature, 2005, 434, 455-456.
Rasika S., Nottebohm F., Alvarez-Buylla A. Testosterone increases the recruitment and/or survival of new high vocal center neurons in adult female canaries. Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 7854-7858.
Rasika S., Alvarez-Buylla A., Notebohm F. BDNF mediates the effects of testosterone on the survival of new neurons in an adult brain. Neuron, 1999, 22, 53-62.
Reiner A., Perkel D.J., Bruce L.L., Butler A.B., Csillag A., Kuenzel W., Medina L., Paxinos G., Shimizu T., Striedter G., Wild M., Ball G.F., Durand S., Gunturkun O., Lee D.W., Mello C.V., Powers A., White S.A., Hough G., Kubikova L., Smulders T.V., Wada K., Dugas-Ford J., Husband S., Yamamoto K., Yu J., Siang C., Jarvis E.D. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J. Comp. Neurol., 2004, 473, 377-414.
Sartor J.J., Balthazart J., Bal G.F. Coordinated and dissociated effects of testosterone on singing behaviour and song control nuclei in canaries (Serinus canaria). Horm Behav, 2005, Apr, 47(4), 467-76.
Scharff C., Nottebohm F. A comparative study of the behavioural deficits following lesions of various parts of the zebra finch song system: implications for vocal learning J. Neurobiol., 1991, 11, 2896-2913.
Schlinger B.A. Sex steroids and their actions on the birdsong system. J. Neurobiol., 1997a, 33, 619-631.
Schlinger BA. The activity and expression of aromatase in songbirds. Brain Res. Bull., 1997b, 44, 359-364.
Schwabl H., Kriner E. Territorial aggression and song of male European robins (Erithacus rubecula) in autumn and spring: effects of antiandrogen treatment. Horm. Behav., 1991, 25, 180-194.
Smith G.T., Brenowitz E.A., Wingfield J.C., Baptista L.F. Seasonal changes in song nuclei and song behaviour in Gambel's white-crowned sparrows. J. Neurobiol., 1995, 28, 114-125.
Smith G.T., Brenowitz E.A., Beecher M.D., Wingfield J.C. Seasonal changes in testosterone, neural attributes of song control nuclei, and song structure in wild songbirds. J. Neurosci., 1997a, 17, 6001-6010.
Smit h G.T., Brenowitz E.A., Wingfield J.C. Roles of photoperiod in seasonal plasticity of the avian song control system. J. Neurobiol., 1997b, 32, 426-442.
Sockman K.W., Sewall K.B., Bal G.F., Hahn T.P. Economy of mate attraction in the Cassin's finch. Biol. Lett., 2005, 1, 34-37.
Soma K.K., Schlinger B.A., Wingfield J.C., Saldanha C.J. Brain aromatase, 5 alphareductase, and 5 beta-reductase change seasonally in wild male song sparrows: relationship to aggressive and sexual behaviour. J. Neurobiol., 2003, 56, 209-221.
Soma K.K., Tramontin A.D., Feat herstone J., Brenowitz E.A. Estrogen contributes to seasonal plasticity of the adult avian song control system. J. Neurobiol., 2004, 58, 413-422.
Sreekumar K.P., Sharp P.J. Effect of photostimulation on concentrations of plasma prolactin in castrated bantams (Gallus domesticus). J. Neuroendocrinol., [1998,] 10, 147-154.
Stark L.L., Perkel D.J. Twostage, input-specific synaptic maturation in a nucleus essential for vocal production in the zebra finch. J. Neurosci., 1999, 19, 9107-9116.
Stokes T.M., Leonard C.M., Nottebohm F. The telencephalon, diencephalon, and mesencephalon of the canary, Serinus canaria, in stereotaxic coordinates. J. Comp. Neurol., 1976, 156, 337-374.
Sturd y C.B., Wild J.M., Mooney R. Respiratory and telencephalic modulation of vocal motor neurons in the zebra finch. J. Neurosci., 2003, 23, 1072-1086.
Tchernichovski O., Mitra P.P., Lints T., Notebohm F. Dynamics of the vocal imitation process: how a zebra finch learns its song. Science, 2001, 291, 2564-2569.
Tramontin A.D., Smith G.T., Breuner C.W., Brenowitz E.A. Seasonal plasticity and sexual dimorphism in the avian song control system: stereological measurement of neuron density and number. J. Comp. Neurol., 1998, 396, 186-192.
Tramontin A.D., Wingfield J.C., Brenowitz E.A. Contributions of social cues and photoperiod to seasonal plasticity in the adult avian song control system. J. Neurosci., 1999, 19, 476-483.
Tramontin A.D., Brenowitz E.A. Seasonal plasticity in the adult brain. Trends Neurosci., 2000a, 23, 251-258.
Tramontin A.D., Hartman V.N., Brenowitz E.A. Breeding conditions induce rapid and sequential growth in adult avian song control circuits: a model of seasonal plasticity in the brain. J. Neurosci., 2000b, 20, 854-861.
Tramontin A.D., Wingfield J.C., Brenowitz E.A. Androgens and estrogens induce seasonal-like growth of song nuclei in the adult songbird brain. J. Neurobiol., 2003a, 57, 130-140.
Tramontin A.D., Garcia-Verdu go J.M., Lim D.A., Alvarez -Buylla A. Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb. Cortex, [2003b,] 13, 580-587.
Vates G.E., Broome B.M., Melo C.V., Notebohm F. Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches (Taenopygia guttata). J. Comp. Neurol., 1996, [366,] 613-642.
Vates G.E., Vicario D.S., Notebohm F. Reafferent thalamo- "cortical" loops in the song system of oscine songbirds. J. Comp. Neurol., 1997, 380, 275-290.
White S.A., Livingston F.S., Mooney R. Androgens modulate NMDA receptor-mediated EPSCs in the zebra finch song system. J. Neurophysiol., 1999, 82, 2221-2234.
Wiley R.H., Piper W.H., Arc hawaranon M., Thompson E.W. Singing in relation to social dominance and testosterone in white-throated sparrows. Behaviour, 1993, 127, 175-190.
Williams H., Vicario D.S. Temporal patterning of song production: participation of nucleus uvaeformis of the thalamus. J. Neurobiol., 1993, 24, 903-912.
Wiliams H. Birdsong and singing behaviour. Ann. N.Y. Acad. Sci., 2004, 1016, 1-30.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.