Article (Scientific journals)
Stochastic excitation of non-radial modes. I. High-angular-degree p modes
Belkacem, Kevin; Samadi, R.; Goupil, Marie-José et al.
2008In Astronomy and Astrophysics, 478, p. 163-174
Peer Reviewed verified by ORBi
 

Files


Full Text
aa7775-07.pdf
Publisher postprint (229.48 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
convection; turbulence; Sun: oscillations
Abstract :
[en] Context: Turbulent motions in stellar convection zones generate acoustic energy, part of which is then supplied to normal modes of the star. Their amplitudes result from a balance between the efficiencies of excitation and damping processes in the convection zones. Aims: We develop a formalism that provides the excitation rates of non-radial global modes excited by turbulent convection. As a first application, we estimated the impact of non-radial effects on excitation rates and amplitudes of the high-angular-degree modes that are observed on the Sun. Methods: A model of stochastic excitation by turbulent convection was developed to compute the excitation rates and then successfully applied to solar radial modes. We generalise this approach to the case of non-radial global modes. This enables us to estimate the energy supplied to high-(l) acoustic modes. Qualitative arguments, as well as numerical calculations, are used to illustrate the results. Results: We find that non-radial effects for p modes are non-negligible: - For high-n modes (i.e. typically n > 3) and for high values of l, the power supplied to the oscillations depends on the mode inertia. - For low-n modes, independent of the value of l, the excitation is dominated by the non-radial components of the Reynolds stress term. Conclusions: Our numerical investigation of high-l p modes shows that the validity of the present formalism is limited to l < 500 due to the spatial separation of scale assumption. Thus, a model for very high-l p-mode excitation rates calls for further theoretical developments; however, the formalism is valid for solar g modes, which will be investigated in a paper in preparation.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Belkacem, Kevin ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Evol. et stabilité des étoiles et des amas d'étoiles (ESEA)
Samadi, R.;  Observatoire de Paris, LESIA, CNRS UMR 8109, 92190 Meudon, France
Goupil, Marie-José;  Observatoire de Paris, LESIA, CNRS UMR 8109, 92190 Meudon, France
Dupret, Marc-Antoine ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique
Language :
English
Title :
Stochastic excitation of non-radial modes. I. High-angular-degree p modes
Publication date :
01 January 2008
Journal title :
Astronomy and Astrophysics
ISSN :
0004-6361
eISSN :
1432-0746
Publisher :
EDP Sciences, Les Ulis, France
Volume :
478
Pages :
163-174
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
http://de.arxiv.org/abs/0710.1039
Available on ORBi :
since 10 November 2010

Statistics


Number of views
37 (1 by ULiège)
Number of downloads
87 (1 by ULiège)

Scopus citations®
 
44
Scopus citations®
without self-citations
22
OpenCitations
 
55

Bibliography


Similar publications



Contact ORBi