Keywords :
Animals; Cell Line; Complement C3-C5 Convertases/antagonists & inhibitors; DNA, Viral/chemistry; Fish Diseases/*virology; Gene Expression Regulation, Viral; Glycoproteins/*genetics/secretion; Glycosylation; Herpesviridae/*genetics/metabolism; Ictaluridae/*virology; Molecular Weight; Open Reading Frames/genetics
Abstract :
[en] Cells infected with the wild-type (WT) strain of channel catfish virus (CCV) secreted a glycoprotein with an apparent molecular mass (MM) superior to 200 kDa into the culture medium. This protein, designated gp250, was the sole viral glycoprotein detected in the culture medium after [3H]mannose labeling of the infected cells. When cells were infected with the attenuated V60 strain, a glycoprotein of 135 kDa (designated gp135) was detected instead of gp250. Because WT gene 50 is predicted to encode a secreted, mucin-type glycoprotein, we expressed this gene transiently and detected a glycoprotein of the same apparent MM as gp250 in the culture medium of transfected catfish cells. The increased mobility in SDS-PAGE of the secreted V60 glycoprotein correlated with the presence of a major deletion in V60 gene 50. Therefore, we concluded that gp250 in the WT and gp135 in the V60 strains are both likely encoded by gene 50. An important shift in the relative mobility of gp250 in SDS-PAGE was observed after tunicamycin treatment of infected cells labeled with [3H]glucosamine, confirming the presence of N-linked sugars on gp250. We observed variations in the size of PCR products derived from gene 50 amplification in three different field isolates. Such genetic variations are a characteristic feature of mucin genes and are linked to crossing-over events between internal repeated sequences, such as those present in gene 50.
Scopus citations®
without self-citations
7