[en] OBJECTIVES: Curcumin (diferuloylmethane) is the principal biochemical component of the spice turmeric and has been shown to possess potent anti-catabolic, anti-inflammatory and antioxidant, properties. This article aims to provide a summary of the actions of curcumin on articular chondrocytes from the available literature with the use of a text-mining tool. We highlight both the potential benefits and drawbacks of using this chemopreventive agent for treating osteoarthritis (OA). We also explore the recent literature on the molecular mechanisms of curcumin mediated alterations in gene expression mediated via activator protein 1 (AP-1)/nuclear factor-kappa B (NF-kappaB) signalling in chondrocytes, osteoblasts and synovial fibroblasts. METHODS: A computer-aided search of the PubMed/Medline database aided by a text-mining tool to interrogate the ResNet Mammalian database 6.0. RESULTS: Recent work has shown that curcumin protects human chondrocytes from the catabolic actions of interleukin-1 beta (IL-1beta) including matrix metalloproteinase (MMP)-3 up-regulation, inhibition of collagen type II and down-regulation of beta1-integrin expression. Curcumin blocks IL-1beta-induced proteoglycan degradation, AP-1/NF-kappaB signalling, chondrocyte apoptosis and activation of caspase-3. CONCLUSIONS: The available data from published in vitro and in vivo studies suggest that curcumin may be a beneficial complementary treatment for OA in humans and companion animals. Nevertheless, before initiating extensive clinical trials, more basic research is required to improve its solubility, absorption and bioavailability and gain additional information about its safety and efficacy in different species. Once these obstacles have been overcome, curcumin and structurally related biochemicals may become safer and more suitable nutraceutical alternatives to the non-steroidal anti-inflammatory drugs that are currently used for the treatment of OA.
Disciplines :
Rheumatology
Author, co-author :
Henrotin, Yves ; Université de Liège - ULiège > Département des sciences de la motricité > Unité de recherche sur l'os et le cartillage (U.R.O.C.) - Didactique des sciences de la santé - Pathologie générale et physiopathologie
Clutterbuck, A. L.
Allaway, D.
Lodwig, E. M.
Harris, P.
Mathy, Marianne ; Université de Liège - ULiège > Département des sciences de la motricité > Unité de recherche sur l'os et le cartillage (U.R.O.C.)
Shakibaei, M.
Mobasheri, A.
Language :
English
Title :
Biological actions of curcumin on articular chondrocytes.
Publication date :
2010
Journal title :
Osteoarthritis and Cartilage
ISSN :
1063-4584
eISSN :
1522-9653
Publisher :
W.B. Saunders, London, United Kingdom
Volume :
18
Issue :
2
Pages :
141-9
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
Copyright 2009 Osteoarthritis Research Society International. All rights reserved.
Srimal R.C., and Dhawan B.N. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25 (1973) 447-452
Goel A., Kunnumakkara A.B., and Aggarwal B.B. Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol 75 (2008) 787-809
Nikitin A., Egorov S., Daraselia N., and Mazo I. Pathway studio-the analysis and navigation of molecular networks. Bioinformatics 19 (2003) 2155-2157
Srivastava R., and Srimal R.C. Modification of certain inflammation-induced biochemical changes by curcumin. Indian J Med Res 81 (1985) 215-223
Mukhopadhyay A., Basu N., Ghatak N., and Gujral P.K. Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions 12 (1982) 508-515
Asakawa N., Tsuno M., Hattori T., Ueyama M., Shinoda A., Miyake Y., et al. Determination of curcumin content of turmeric by high performance liquid chromatography. (author's transl). Yakugaku Zasshi 101 (1981) 374-377
Zeng Y., Qiu F., Liu Y., Qu G., and Yao X. Isolation and identification of phase 1 metabolites of demethoxycurcumin in rats. Drug Metab Dispos 35 (2007) 1564-1573
Payton F., Sandusky P., and Alworth W.L. NMR study of the solution structure of curcumin. J Nat Prod 70 (2007) 143-146
Sharma R.A., Gescher A.J., and Steward W.P. Curcumin: the story so far. Eur J Cancer 41 (2005) 1955-1968
Ireson C.R., Jones D.J., Orr S., Coughtrie M.W., Boocock D.J., Williams M.L., et al. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomarkers Prev 11 (2002) 105-111
Ireson C., Orr S., Jones D.J., Verschoyle R., Lim C.K., Luo J.L., et al. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61 (2001) 1058-1064
Cheng A.L., Hsu C.H., Lin J.K., Hsu M.M., Ho Y.F., Shen T.S., et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21 (2001) 2895-2900
Sharma R.A., Euden S.A., Platton S.L., Cooke D.N., Shafayat A., Hewitt H.R., et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10 (2004) 6847-6854
Heath D.D., Pruitt M.A., Brenner D.E., Begum A.N., Frautschy S.A., and Rock C.L. Tetrahydrocurcumin in plasma and urine: quantitation by high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 824 (2005) 206-212
Garcea G., Berry D.P., Jones D.J., Singh R., Dennison A.R., Farmer P.B., et al. Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev 14 (2005) 120-125
Garcea G., Jones D.J., Singh R., Dennison A.R., Farmer P.B., Sharma R.A., et al. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90 (2004) 1011-1015
Anand P., Kunnumakkara A.B., Newman R.A., and Aggarwal B.B. Bioavailability of curcumin: problems and promises. Mol Pharm 4 (2007) 807-818
Shoba G., Joy D., Joseph T., Majeed M., Rajendran R., and Srinivas P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64 (1998) 353-356
Li L., Braiteh F.S., and Kurzrock R. Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104 (2005) 1322-1331
Bisht S., Feldmann G., Soni S., Ravi R., Karikar C., Maitra A., et al. Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"): a novel strategy for human cancer therapy. J Nanobiotechnology 5 (2007) 3
Maiti K., Mukherjee K., Gantait A., Saha B.P., and Mukherjee P.K. Curcumin-phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 330 (2007) 155-163
Cui J., Yu B., Zhao Y., Zhu W., Li H., Lou H., et al. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm 371 (2009) 148-155
Tomren M.A., Masson M., Loftsson T., and Tonnesen H.H. Studies on curcumin and curcuminoids XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin. Int J Pharm 338 (2007) 27-34
Anuchapreeda S., Leechanachai P., Smith M.M., Ambudkar S.V., and Limtrakul P.N. Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem Pharmacol 64 (2002) 573-582
Gopinath D., Ahmed M.R., Gomathi K., Chitra K., Sehgal P.K., and Jayakumar R. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 25 (2004) 1911-1917
Chan M.M., Huang H.I., Fenton M.R., and Fong D. In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55 (1998) 1955-1962
Wang Y.J., Pan M.H., Cheng A.L., Lin L.I., Ho Y.S., Hsieh C.Y., et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15 (1997) 1867-1876
Kurien B.T., Singh A., Matsumoto H., and Scofield R.H. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol 5 (2007) 567-576
Tonnesen H.H., Masson M., and Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm 244 (2002) 127-135
Jackson J.K., Higo T., Hunter W.L., and Burt H.M. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. Inflamm Res 55 (2006) 168-175
Thompson K.H., Bohmerle K., Polishchuk E., Martins C., Toleikis P., Tse J., et al. Complementary inhibition of synoviocyte, smooth muscle cell or mouse lymphoma cell proliferation by a vanadyl curcumin complex compared to curcumin alone. J Inorg Biochem 98 (2004) 2063-2070
Lev-Ari S., Strier L., Kazanov D., Elkayam O., Lichtenberg D., Caspi D., et al. Curcumin synergistically potentiates the growth-inhibitory and pro-apoptotic effects of celecoxib in osteoarthritis synovial adherent cells. Rheumatology (Oxford) 45 (2006) 171-177
Toegel S., Wu S.Q., Piana C., Unger F.M., Wirth M., Goldring M.B., et al. Comparison between chondroprotective effects of glucosamine, curcumin, and diacerein in IL-1beta-stimulated C-28/I2 chondrocytes. Osteoarthritis Cartilage 16 (2008) 1205-1212
Shakibaei M., Schulze-Tanzil G., John T., and Mobasheri A. Curcumin protects human chondrocytes from IL-l1beta-induced inhibition of collagen type II and beta1-integrin expression and activation of caspase-3: an immunomorphological study. Ann Anat 187 (2005) 487-497
Henrotin Y., and Kurz B. Antioxidant to treat osteoarthritis: dream or reality?. Curr Drug Targets 8 (2007) 347-357
Abramson S.B. Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Res Ther 10 Suppl 2 (2008) S2
Henrotin Y.E., Bruckner P., and Pujol J.P. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11 (2003) 747-755
Henrotin Y., Kurz B., and Aigner T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes?. Osteoarthritis Cartilage 13 (2005) 643-654
Henrotin Y., Sanchez C., and Balligand M. Pharmaceutical and nutraceutical management of canine osteoarthritis: present and future perspectives. Vet J 170 (2005) 113-123
Sreejayan, and Rao M.N. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 49 (1997) 105-107
Sreejayan N., and Rao M.N. Free radical scavenging activity of curcuminoids. Arzneimittelforschung 46 (1996) 169-171
Swarnakar S., Ganguly K., Kundu P., Banerjee A., Maity P., and Sharma A.V. Curcumin regulates expression and activity of matrix metalloproteinases 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer. J Biol Chem 280 (2005) 9409-9415
Nishinaka T., Ichijo Y., Ito M., Kimura M., Katsuyama M., Iwata K., et al. Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element. Toxicol Lett 170 (2007) 238-247
Hong J., Bose M., Ju J., Ryu J.H., Chen X., Sang S., et al. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25 (2004) 1671-1679
Schulze-Tanzil G., Mobasheri A., Sendzik J., John T., and Shakibaei M. Effects of curcumin (diferuloylmethane) on nuclear factor kappaB signaling in interleukin-1beta-stimulated chondrocytes. Ann N Y Acad Sci 1030 (2004) 578-586
Brouet I., and Ohshima H. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 206 (1995) 533-540
Nanji A.A., Jokelainen K., Tipoe G.L., Rahemtulla A., Thomas P., and Dannenberg A.J. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Am J Physiol Gastrointest Liver Physiol 284 (2003) G321-G327
Onodera S., Kaneda K., Mizue Y., Koyama Y., Fujinaga M., and Nishihira J. Macrophage migration inhibitory factor up-regulates expression of matrix metalloproteinases in synovial fibroblasts of rheumatoid arthritis. J Biol Chem 275 (2000) 444-450
Liacini A., Sylvester J., Li W.Q., and Zafarullah M. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol 21 (2002) 251-262
Li W.Q., Dehnade F., and Zafarullah M. Oncostatin M-induced matrix metalloproteinase and tissue inhibitor of metalloproteinase-3 genes expression in chondrocytes requires Janus kinase/STAT signaling pathway. J Immunol 166 (2001) 3491-3498
Berenbaum F. Signaling transduction: target in osteoarthritis. Curr Opin Rheumatol 16 (2004) 616-622
Gilmore T.D. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25 (2006) 6680-6684
Hess J., Angel P., and Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117 (2004) 5965-5973
Glover J.N., and Harrison S.C. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature 373 (1995) 257-261
Roman-Blas J.A., and Jimenez S.A. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 14 (2006) 839-848
Roshak A.K., Callahan J.F., and Blake S.M. Small-molecule inhibitors of NF-kappaB for the treatment of inflammatory joint disease. Curr Opin Pharmacol 2 (2002) 316-321
Huang T.S., Lee S.C., and Lin J.K. Suppression of c-Jun/AP-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells. Proc Natl Acad Sci USA 88 (1991) 5292-5296
Onodera S., Nishihira J., Iwabuchi K., Koyama Y., Yoshida K., Tanaka S., et al. Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and -13 in rat osteoblasts. Relevance to intracellular signaling pathways. J Biol Chem 277 (2002) 7865-7874
Liacini A., Sylvester J., Li W.Q., Huang W., Dehnade F., Ahmad M., et al. Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes. Exp Cell Res 288 (2003) 208-217
Kawasaki H., Komai K., Nakamura M., Yamamoto E., Ouyang Z., Nakashima T., et al. Human wee1 kinase is directly transactivated by and increased in association with c-Fos/AP-1: rheumatoid synovial cells overexpressing these genes go into aberrant mitosis. Oncogene 22 (2003) 6839-6844
Lin S.K., Kok S.H., Yeh F.T., Kuo M.Y., Lin C.C., Wang C.C., et al. MEK/ERK and signal transducer and activator of transcription signaling pathways modulate oncostatin M-stimulated CCL2 expression in human osteoblasts through a common transcription factor. Arthritis Rheum 50 (2004) 785-793
Sylvester J., Liacini A., Li W.Q., and Zafarullah M. Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3, -13 and aggrecanase-1 genes in articular chondrocytes. Cell Signal 16 (2004) 469-476
Cho M.L., Jung Y.O., Moon Y.M., Min S.Y., Yoon C.H., Lee S.H., et al. Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol Lett 103 (2006) 159-166
Shakibaei M., John T., Schulze-Tanzil G., Lehmann I., and Mobasheri A. Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: implications for the treatment of osteoarthritis. Biochem Pharmacol 73 (2007) 1434-1445
Hettne K.M., de Mos M., de Bruijn A.G., Weeber M., Boyer S., van Mulligen E.M., et al. Applied information retrieval and multidisciplinary research: new mechanistic hypotheses in complex regional pain syndrome. J Biomed Discov Collab 2 (2007) 2
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.