Groundwater flow modelling; Conceptual model uncertainty; GLUE; Scenario uncertainty; Bayesian model averaging; Markov chain Monte Carlo
Abstract :
[en] Groundwater models are often used to predict the future behaviour of groundwater systems. These models may vary in complexity from simplified system conceptualizations to more intricate versions. It has been recently suggested that uncertainties in model predictions are largely dominated by uncertainties arising from the definition of alternative conceptual models. Different external factors such as climatic conditions or groundwater abstraction policies, on the other hand, may also play an important role. Rojas et al. (2008) proposed a multimodel approach to account for predictive uncertainty arising from forcing data (inputs), parameters and alternative conceptualizations. In this work we extend upon this approach to include uncertainties arising from the definition of alternative future scenarios and we apply the extended methodology to a real aquifer system underlying the Walenbos Nature Reserve area in Belgium. Three alternative conceptual models comprising different levels of geological knowledge are considered. Additionally, three recharge settings (scenarios) are proposed to evaluate recharge uncertainties. A joint estimation of the predictive uncertainty including parameter, conceptual model and scenario uncertainties is estimated for groundwater budget terms. Finally, results obtained using the improved approach are compared with the results obtained from methodologies that include a calibration step and which use a model selection criterion to discriminate between alternative conceptualizations. Results showed that conceptual model and scenario uncertainties significantly contribute to the predictive variance for some budget terms. Besides, conceptual model uncertainties played an important role even for the case when a model was preferred over the others. Predictive distributions showed to be considerably different in shape, central moment and spread among alternative conceptualizations and scenarios analysed. This reaffirms the idea that relying on a single conceptual model driven by a particular scenario, will likely produce bias and under-dispersive estimations of the predictive uncertainty. Multimodel methodologies based on the use of model selection criteria produced ambiguous results. In the frame of a multimodel approach, these inconsistencies are critical and can not be neglected. These results strongly advocate the idea of addressing conceptual model uncertainty in groundwater modelling practice. Additionally, considering alternative future recharge uncertainties will permit to obtain more realistic and, possibly, more reliable estimations of the predictive uncertainty.
Research Center/Unit :
Aquapôle - ULiège
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Rojas, Rodriguo; Katholieke Universiteit Leuven - KUL > Department of Earth and Environmental Sciences > Applied Geology and Mineralogy
Kahunde, Samalie; Katholieke Universiteit Leuven and Vrije Universiteit Brussel > Interuniversity Programme in Water Resources Engineering (IUPWARE)
Peeters, Luk; CSIRO Land & Water, Australia > Adelaide
Batelaan, Okke; Vrije Universiteit Brussel - VUB > Department of Hydrology and Hydraulic Engineering
Feyen, Luc; Joint Research Centre, European Commission > Institute for Environment and Sustainability > Land Management and Natural Hazards Unit
Dassargues, Alain ; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'environnement
Language :
English
Title :
Application of a multi-model approach to account for conceptual model and scenario uncertainties in groundwater modelling
Ajami N., Duan Q., Sorooshian S. An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resources Research 2007, 43:W01403. 10.1029/2005WR004745.
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974, 19:716-723.
Anderson M., Woessner W. Applied Groundwater Modelling - Simulation of Flow and Advective Transport 1992, Academic Press, San Diego, California. first ed.
Batelaan O., De Smedt F. SEEPAGE, a new MODFLOW DRAIN Package. Ground Water 2004, 42:576-588.
Batelaan O., De Smedt F. GIS-based recharge estimation by coupling surface-subsurface water balances. Journal of Hydrology 2007, 337:337-355.
Batelaan O., De Smedt F., Otero Valle M., Huybrechts W. Development and application of a groundwater model integrated in the GIS GRASS. Application of Geographic Information Systems in Hydrology and Water Resources Management 1993, 581-590. IAHS Publ. No. 211, Vienna, Austria. K. Kovar, H. Nachtebel (Eds.).
Batelaan O., De Smedt F., De Becker P., Huybrechts W. Characterization of a regional groundwater discharge area by combined analysis of hydrochemistry, remote sensing and groundwater modelling. Shallow Groundwater Systems. International Contributions to Hydrogeology 1998, vol. 18:75-86. A.A. Balkema, Rotterdam.
Batelaan O., Meyus Y., De Smedt F. De grondwatervoeding van Vlaanderen. Water 2007, 28:64-71.
Beven K. Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources 1993, 16:41-51.
Beven K. A manifesto for the equifinality thesis. Journal of Hydrology 2006, 320:18-36.
Beven K., Binley A. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes 1992, 6:279-283.
Beven K., Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology 2001, 249:11-29.
Binley A., Beven K. Vadose zone flow model uncertainty as conditioned on geophysical data. Ground Water 2003, 41:119-127.
Blasone R.-S., Madsen H., Rosbjerg D. Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling. Journal of Hydrology 2008, 353:18-32.
Blasone R.-S., Vrugt J., Madsen H., Rosbjerg D., Robinson B., Zyvoloski G. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances in Water Resources 2008, 31:630-648.
Bredehoeft J. From models to performance assessment: the conceptualization problem. Ground Water 2003, 41:571-577.
Bredehoeft J. The conceptualization model problem-surprise. Hydrogeology Journal 2005, 13:37-46.
Brooks S., Gelman A. General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 1998, 7:434-455.
Chib S., Greenberg E. Understanding the Metropolis-Hastings algorithm. The American Statistician 1995, 49:327-335.
Cools J., Meyus Y., Woldeamlak S., Batelaan O., De Smedt F. Large-scale GIS-based hydrogeological modeling of Flanders: a tool for groundwater management. Environmental Geology 2006, 50:1201-1209.
Cowles M., Carlin B. Markov chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association 1996, 91:883-904.
De Becker, P., Huybrechts, W., 1997. Het Walenbos - Ecohydrologische Atlas. Rep. No. 97/03, Instituut voor Natuurbehoud, Brussels, Belgium.
DOV, Databank Ondergrond Vlaanderen, 2008.
Draper D. Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society Series B 1995, 57:45-97.
Feyen L., Beven K., De Smedt F., Freer J. Stochastic capture zone delineation within the GLUE-methodology: conditioning on head observations. Water Resources Research 2001, 37:625-638.
Gaganis P., Smith L. Evaluation of the uncertainty of groundwater model predictions associated with conceptual errors: a per-datum approach to model calibration. Advances in Water Resources 2006, 29:503-514.
Gallagher M., Doherty J. Parameter estimation and uncertainty analysis for a watershed model. Environmental Modelling & Software 2007, 22:1000-1020.
Gelman A., Carlin J., Stern H., Rubin D. Bayesian Data Analysis 2004, Chapman & Hall, CRC, New York. second ed.
Geyer C. Practical Markov chain Monte Carlo. Statistical Science 1992, 7:473-483.
Ghosh J., Delampady M., Samanta T. An Introduction to Bayesian Analysis - Theory and Methods 2006, Springer, New York. first ed.
Gilks W., Richardson S., Spiegelhalter D. Markov Chain Monte Carlo in Practice 1995, Chapman & Hall/CRC, Boca Raton, Florida, USA. first ed.
Gómez-Hernández J. Complexity. Ground Water 2006, 44:782-785.
Gullentops F., Bogemans F., De Moor G., Palissen E., Pissart A. Quaternary lithostratigraphic units (Belgium). Geologica Belgica 2001, 4:153-164.
HAECON, and Witteveen+Bos, 2004. Ontwikkelen van regionale modellen ten behoeve van het Vlaams Grondwater Model (VGM) in GMS/MODFLOW: Perceel No. 3 Brulandkrijtmodel (Development of regional models for the Flemish Groundwater Model (VGM) in GMS/MODFLOW). Tech. rep., AMINAL, afdeling WATER, Brussels, Belgium.
Harbaugh, A., 2005. MODFLOW-2005, the US Geological Survey modular ground-water model-the Ground-Water Flow Process. Techniques and methods 6-a16, United States Geological Survey, Reston, Virginia, USA.
Harrar W., Sonnenberg T., Henriksen H. Capture zone, travel time, and solute transport predictions using inverse modelling and different geological models. Hydrogeology Journal 2003, 11:536-548.
Hassan A. A methodology for validating numerical ground water models. Ground Water 2004, 42:347-362.
Hassan A. Validation of numerical ground water models used to guide decision making. Ground Water 2004, 42:277-290.
Hastings W. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57:97-109.
Hill M. The practical use of simplicity in developing ground water models. Ground Water 2006, 44:775-781.
Hill M., Tiedeman C. Effective Groundwater Model Calibration: with Analysis of Data, Sensitivities, Predictions and Uncertainty 2007, John Wiley & Sons, Inc., New Jersey. first ed.
Hoeting J. Methodology for Bayesian model averaging: an update. International Biometric Conference 2002, 231-240. International Biometric Society, Freiburg, Germany.
Hoeting J., Madigan D., Raftery A., Volinsky C. Bayesian model averaging: a tutorial. Statistical Science 1999, 14:382-401.
Højberg A., Refsgaard J. Model uncertainty-parameter uncertainty versus conceptual models. Water Science & Technology 2005, 52:177-186.
Hunt R., Doherty J., Tonkin M. Are models too simple? Arguments for increased parameterization. Ground Water 2007, 45:254-262.
Hurvich C., Tsai C. Regression and time series model selection in small sample. Biometrika 1989, 76:297-307.
Ijiri Y., Saegusa H., Sawada A., Ono M., Watanabe K., Karasaki K., Doughty C., Shimo M., Fumimura K. Evaluation of uncertainties originating from the different modeling approaches applied to analyze regional groundwater flow in the Tono area of Japan. Journal of Contaminant Hydrology 2009, 103:168-181.
Jensen, J., 2003. Parameter and uncertainty estimation in groundwater modelling. Ph.D. thesis, Department of Civil Engineering, Aalborg University, Denmark, series Paper No. 23.
Kashyap R. Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Transactions on Pattern Analysis and Machine Intelligence 1982, 42:99-104.
Kass R., Raftery A. Bayes factors. Journal of the American Statistical Association 1995, 90:773-795.
Laga P., Louwye S., Geets S. Paloegene and Neogene lithostratigraphie units (Belgium). Geologica Belgica 2001, 4:135-152.
Makowski D., Wallach D., Tremblay M. Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods. Agronomie 2002, 22:191-203.
McKay D., Beckman R., Conover W. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979, 21:239-245.
Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., Teller E. Equation of state calculations by fast computing machines. The Journal of Chemical Physics 1953, 21:1087-1092.
Meyer, P., Ye, M., Neuman, S., Cantrell, K., 2004. Combined estimation of hydrogeologic conceptual model and parameter uncertainty. Report nureg/cr-6843 pnnl-14534, US Nuclear Regulatory Commission, Washington, US.
Meyer, P., Ye, M., Rockhold, M., Neuman, S., Cantrell, K., 2007. Combined estimation of hydrogeologic conceptual model parameter and scenario uncertainty with application to uranium transport at the Hanford Site 300 area. Report nureg/cr-6940 pnnl-16396, US Nuclear Regulatory Commission, Washington, US.
Meyus, Y., Batelaan, O., De Smedt, F., 2000. Concept Vlaams Grondwater Model (VGM): Technicsh concept van het VGM; deelraport 1: Hydrogeologische codering van de ondergrond van Vlaanderen (HCOV) (Technical concept of the Flemish groundwtaer model: Report 1: Hydrogeological coding of the subsoil of Flanders) [In Dutch]. Tech. rep., AMINAL, afedeling WATER, Belgium.
Neuman S. Maximum likelihood Bayesian averaging of uncertain model predictions. Stochastic Environmental Research and Risk Assessment 2003, 17:291-305.
Neuman, S., Wierenga, P., 2003. A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. Report nureg/cr-6805, US Nuclear Regulatory Commission, Washington USA.
Poeter E., Anderson D. Multimodel ranking and inference in ground water modelling. Ground Water 2005, 43:597-605.
Poeter, E., Hill, M., Banta, E., Mehl, S., Christensen, S., 2005. UCODE-2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation, Technical methods 6-a11, United States Geological Survey, Reston, Virginia, USA.
Pollock, D., 1994. User's guide for MODPATH/MODPATH-PLOT, version 3: a particle tracking post-processing package for MODFLOW, the US Geological Survey finite-difference ground-water flow model. Open-file report 94-464, United States Geological Survey, Reston, Virginia, USA.
Refsgaard J., Van der Sluijs J., Brown J., Van der Keur P. A framework for dealing with uncertainty due to model structure error. Advances in Water Resources 2006, 29:1586-1597.
Refsgaard J., Van der Sluijs J., Højberg A., Vanrolleghem P. Uncertainty in the environmental modelling process - a framework and guidance. Environmental Modelling & Software 2007, 22:1543-1556.
Renard P. Stochastic hydrogeology: what professionals really need?. Ground Water 2007, 45:531-541.
Robert C. The Bayesian Choice - From Decision - Theoretic Foundations to Computational Implementation 2007, Springer-Verlag, New York. second ed.
Rojas R., Dassargues A. Groundwater flow modelling of the regional aquifer of the Pampa del Tamarugal, northern Chile. Hydrogeology Journal 2007, 15:537-551.
Rojas R., Feyen L., Dassargues A. Conceptual model uncertainty in groundwater modeling: combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resources Research 2008, 44:W12418. 10.1029/2008WR006908.
Rojas R., Feyen L., Dassargues A. Sensitivity analysis of prior model probabilities and the value of prior knowledge in the assessment of conceptual model uncertainty in groundwater modelling. Hydrological Processes 2009, 23:1131-1146.
Rojas R., Batelaan O., Feyen L., Dassargues A. Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal - North Chile. Hydrology and Earth System Sciences 2010, 14:171-192.
Rojas R., Feyen L., Batelaan O., Dassargues A. On the value of conditioning data to reduce conceptual model uncertainty in groundwater modelling. Water Resources Research 2010, 46.
Romanowicz R., Beven K., Tawn J. Evaluation of prediction uncertainty in non-linear hydrological models using a Bayesian approach. Statistics for the Environment II - Water Related Issues 1994, John Wiley & Sons, Inc., Chichester. V. Barnett, F. Trukman (Eds.).
Rubin Y. Applied Stochastic Hydrogeology 2003, Oxford University Press, New York. first ed.
Schwartz G. Estimating the dimension of a model. Annals of Statistics 1978, 6:461-464.
Seifert D., Sonnenberg T., Scharling P., Hinsby K. Use of alternative conceptual models to assess the impact of a buried valley on groundwater vulnerability. Hydrogeology Journal 2008, 16:659-674.
Singh A., Mishra S., Ruskauff G. Model averaging techniques for quantifying conceptual model uncertainty. Ground Water 2010, 48:701-715.
Sorensen D., Gianola D. Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics 2002, Springer-Verlag, New York, vol. I. first ed.
Tierney L. Markov chains for exploring posterior distributions. The Annals of Statistics 1994, 22:1701-1728.
Troldborg L., Refsgaard J., Jensen K., Engesgaard P. The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system. Hydrogeology Journal 2007, 15:843-860.
Wasserman L. Bayesian model selection and model averaging. Journal of Mathematical Psychology 2000, 44:92-107.
Ye M., Neuman S., Meyer P. Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resources Research 2004, 40:W05113. 10.1029/2003WR002557.
Ye M., Neuman S., Meyer P., Pohlmann K. Sensitivity analysis and assessment of prior model probabilities in MLBMA with application to unsaturated fractured tuff. Water Resources Research 2005, 41:W12429. 10.1029/2005WR004260.
Ye M., Pohlmann K., Chapman J., Shafer D. On evaluation of recharge model uncertainty: a priori and a posteriori. 2006 International High Level Radioactive Waste Management Conference 2006, American Nuclear Society, Las Vegas, Nevada, US.
Ye M., Meyer P., Neuman S. On model selection criteria in multimodel analysis. Water Resources Research 2008, 44:W03428. 10.1029/2008WR006803.
Ye M., Pohlmann K., Chapman J. Expert elicitation of recharge model probabilities for the Death Valley regional flow system. Journal of Hydrology 2008, 354:102-115.
Ye M., Pohlman K., Chapman J., Pohll G., Reeves D. A model-averaging method for assessing groundwater conceptual model uncertainty. Ground Water 2010, 48:716-728.