[en] The collinear eZe configuration of helium, with the electrons on opposite sides of the nucleus, is studied in the presence of an external electromagnetic (laser or microwave) field. We show that the classically unstable "asymmetric stretch" orbit, on which doubly excited intrashell states of helium with maximum interelectronic angle are anchored, can be stabilized by means of a resonant driving where the frequency of the electromagnetic field equals the frequency of Kepler-like oscillations along the orbit. A static magnetic field, oriented parallel to the oscillating electric field of the driving, can be used to enforce the stability of the configuration with respect to deviations from collinearity. Quantum Floquet calculations within a collinear model of the driven two-electron atom reveal the existence of nondispersive wave packets localized on the stabilized asymmetric stretch orbit, for double excitations corresponding to principal quantum numbers of the order of Ngreater than or similar to10.
Disciplines :
Physics
Author, co-author :
Schlagheck, Peter ; Université de Liège - ULiège > Département de physique > Physique quantique statistique
Pingel, D.
Schmelcher, P.
Language :
English
Title :
Collinear helium under periodic driving: Stabilization of the asymmetric stretch orbit
Publication date :
2003
Journal title :
Physical Review. A, Atomic, molecular, and optical physics
ISSN :
1050-2947
eISSN :
1094-1622
Publisher :
American Physical Society, College Park, United States - Maryland
D.N. Fittinghoff, P.R. Bolton, B. Chang, and K.C. Kulander, Phys. Rev. Lett. 69, 2642 (1992).
B. Walker, B. Sheehy, L.F. DiMauro, P. Agostini, K.J. Schafer, and K.C. Kulander, Phys. Rev. Lett. 73, 1227 (1994).
S. Larochelle, A. Talebpour, and S.L. Chin, J. Phys. B 31, 1201 (1998).
T. Weber, et al., Phys. Rev. Lett. 84, 443 (2000).
B. Feuerstein, et al., Phys. Rev. Lett. 87, 043003 (2001).
P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
A. Becker and F.H.M. Faisal, J. Phys. B 29, L197 (1996).
J.B. Watson, A. Sanpera, D.G. Lappas, P.L. Knight, and K. Burnett, Phys. Rev. Lett. 78, 1884 (1997).
A. Becker and F.H.M. Faisal, Phys. Rev. Lett. 84, 3546 (2000).
G.L. Yudin and M.Y. Ivanov, Phys. Rev. A 63, 033404 (2001).
A. Buchleitner, Ph.D. thesis, Université Pierre et Marie Curie, Paris (unpublished).
A. Buchleitner and D. Delande, Phys. Rev. Lett. 75, 1487 (1995).
I. Bialynicki-Birula, M. Kaliński, and J.H. Eberly, Phys. Rev. Lett. 73, 1777 (1994).
J. Zakrzewski, D. Delande, and A. Buchleitner, Phys. Rev. Lett. 75, 4015 (1995).
M. Kaliński and J.H. Eberly, Phys. Rev. Lett. 77, 2420 (1996)
K. Richter and D. Wintgen, Phys. Rev. Lett. 65, 1965 (1990).
K. Richter, J.S. Briggs, D. Wintgen, and E.A. Solov'ev, J. Phys. B 25, 3929 (1992).
P. Schlagheck and A. Buchleitner, Physica D 131, 110 (1999).
P. Schlagheck and A. Buchleitner, J. Phys. B 31, L489 (1998).
P. Schlagheck and A. Buchleitner, Europhys. Lett. 46, 24 (1999).
P. Schlagheck and A. Buchleitner, Eur. Phys. J. D 22, 401 (2003).
M. Pont and M. Gavrila, Phys. Rev. Lett. 65, 2362 (1990).
N.J. Kylstra, R.A. Worthington, A. Patel, P.L. Knight, J.R. Vázquez de Aldana, and L. Roso, Phys. Rev. Lett. 85, 1835 (2000).
G.S. Ezra, K. Richter, G. Tanner, and D. Wintgen, J. Phys. B 24, L413 (1991).
K. Richter and D. Wintgen, J. Phys. B 26, 3719 (1993).
J.G. Leopold and I.C. Percival, Phys. Rev. Lett. 41, 944 (1978).
I.C. Percival, Adv. Chem. Phys. 36, 1 (1977).
P. Kustaanheimo and E. Stiefel, J. Reine Angew. Math. 218, 204 (1965).
C.L. Siegel, Ann. Math. 42, 127 (1941).
Z. Bai, Y. Gu, and J. Yuan, Physica D 118, 17 (1998).
B. Mirbach and H.J. Korsch, J. Phys. A 27, 6579 (1994).
A.J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, New York, 1983).
R.S. MacKay, J.D. Meiss, and I.C. Percival, Phys. Rev. Lett. 52, 697 (1984).
R. Ketzmerick, L. Hufnagel, F. Steinbach, and M. Weiss, Phys. Rev. Lett. 85, 1214 (2000).
J. Müller, J. Burgdörfer, and D. Noid, Phys. Rev. A 45, 1471 (1992).
J. Müller and J. Burgdörfer, Phys. Rev. Lett. 70, 2375 (1993).
M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, Phys. Rev. A 53, 1424 (1996).
R. Püttner, B. Grémaud, D. Delande, M. Domke, M. Martins, A.S. Schlachter, and G. Kaindl, Phys. Rev. Lett. 86, 3747 (2001).
P. Grujić and N. Simonović, J. Phys. B 24, 5055 (1991).
N.S. Simonović, J. Phys. B 30, L329 (1997).
J.G. Leopold and D. Richards, J. Phys. B 20, 2369 (1987).
K. Sacha, J. Zakrzewski, and D. Delande, Eur. Phys. J. D 1, 231 (1998).
Very high magnetic-field strengths B>2 do still provide transverse confinement, but perturb the near-collinear motion so strongly that the configuration disintegrates along the z axis.
R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A. Giles Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, Nature (London) 417, 156 (2002).
B. Grémaud and D. Delande, Europhys. Lett. 40, 363 (1997).
R. Grobe and J.H. Eberly, Phys. Rev. Lett. 68, 2905 (1992).
R. Shakeshaft, Z. Phys. D: At., Mol. Clusters 8, 47 (1988).
N. Moiseyev, Phys. Rep. 302, 212 (1998).
R. Blümel and W. P. Reinhardt, in Directions in Chaos, edited by B.-L. Hao et al. (World Scientific, Hong Kong, 1991), Vol. 4.
D. Wintgen, K. Richter, and G. Tanner, Chaos 2, 19 (1992).
E.J. Heller, Phys. Rev. Lett. 53, 1515 (1984).
K. Richter, G. Tanner, and D. Wintgen, Phys. Rev. A 48, 4182 (1993).
P. Schmelcher and F.K. Diakonos, Phys. Rev. Lett. 78, 4733 (1997).
F.K. Diakonos, P. Schmelcher, and O. Biham, Phys. Rev. Lett. 81, 4349 (1998).
P. Schmelcher and F.K. Diakonos, Phys. Rev. E 57, 2739 (1998).
D. Pingel, P. Schmelcher, F.K. Diakonos, and O. Biham, Phys. Rev. E 62, 2119 (2000).
D. Pingel, P. Schmelcher, and F.K. Diakonos, Phys. Rev. E 64, 026214 (2001).
S.M. Zoldi and H.S. Greenside, Phys. Rev. E 57, R2511 (1998).