[en] We study the coherent flow of interacting Bose-condensed atoms in mesoscopic waveguide geometries. Analytical and numerical methods, based on the mean-field description of the condensate, are developed to study both stationary as well as time-dependent propagation processes. We apply these methods to the propagation of a condensate through an atomic quantum dot in a waveguide, discuss the nonlinear transmission spectrum and show that resonant transport is generally suppressed due to an interaction-induced bistability phenomenon. Finally, we establish a link between the nonlinear features of the transmission spectrum and the self-consistent quasibound states of the quantum dot.
Disciplines :
Physics
Author, co-author :
Paul, T.
Hartung, M.
Richter, K.
Schlagheck, Peter ; Université de Liège - ULiège > Département de physique > Physique quantique statistique
Language :
English
Title :
Nonlinear transport of Bose-Einstein condensates through mesoscopic waveguides
Publication date :
2007
Journal title :
Physical Review. A, Atomic, molecular, and optical physics
ISSN :
1050-2947
eISSN :
1094-1622
Publisher :
American Physical Society, College Park, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
T. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoni, and M. K. Oberthaler, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94. 020403 94, 020403 (2005).
Y. Shin, C. Sanner, G.-B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, M. Prentiss, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.72.021604 72, 021604 (R) (2005).
T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, Nat. Phys. ZZZZZZ 1745-2473 1, 57 (2005).
A. Günther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortágh, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.170405 95, 170405 (2005).
R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.84.4749 84, 4749 (2000).
W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, Nature (London) NATUAS 0028-0836 10.1038/35097032 413, 498 (2001).
H. Ott, J. Fortágh, S. Kraft, A. Günther, D. Komma, and C. Zimmermann, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91.040402 91, 040402 (2003).
J. H. Thywissen, R. M. Westervelt, and M. Prentiss, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.83.3762 83, 3762 (1999).
I. Carusotto and G. C. La Rocca, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.84.399 84, 399 (2000).
I. Carusotto, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.63.023610 63, 023610 (2001).
T. Paul, K. Richter, and P. Schlagheck, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.020404 94, 020404 (2005).
K. Rapedius, D. Witthaut, and H. J. Korsch, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.73.033608 73, 033608 (2006).
T. Paul, P. Leboeuf, N. Pavloff, K. Richter, and P. Schlagheck, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.72.063621 72, 063621 (2005).
T. Paul, P. Schlagheck, P. Leboeuf, and N. Pavloff, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.210602 98, 210602 (2007).
N. Bilas and N. Pavloff, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.130403 95, 130403 (2005).
W. Guerin, J.-F. Riou, J. P. Gaebler, V. Josse, P. Bouyer, and A. Aspect, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.97.200402 97, 200402 (2006).
I. Bloch, T. W. Hänsch, and T. Esslinger, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.82.3008 82, 3008 (1999).
C. Menotti and S. Stringari, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.66.043610 66, 043610 (2002).
P. Leboeuf and N. Pavloff, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.64.033602 64, 033602 (2001).
P. Leboeuf, N. Pavloff, and S. Sinha, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.68.063608 68, 063608 (2003).
L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003).
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.71.463 71, 463 (1999).
Y. Castin and R. Dum, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.77.5315 77, 5315 (1996).
A. D. Jackson, G. M. Kavoulakis, and C. J. Pethick, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.58.2417 58, 2417 (1998).
D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.3745 85, 3745 (2000).
V. Dunjko, V. Lorent, and M. Olshanii, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.86.5413 86, 5413 (2001).
M. Olshanii, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.81.938 81, 938 (1998).
J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndic, K. S. Johnson, R. M. Westervelt, and M. Prentiss, Eur. Phys. J. D EPJDF6 1434-6060 10.1007/s100530050579 7, 361 (1999).
For a given value of as n, we numerically compute the ground state of Eq. 8 by means of imaginary-time propagation and obtain in this way the corresponding value of.
L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.65.043614 65, 043614 (2002).
S. A. Gredeskul and Y. S. Kivshar, Phys. Rep. PRPLCM 0370-1573 10.1016/0370-1573(92)90023-S 216, 1 (1992).
R. Knapp, G. Papanicolaou, and B. White, J. Stat. Phys. JSTPBS 0022-4715 10.1007/BF01029200 63, 567 (1991).
T. Shibata, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.43.6760 43, 6760 (1991).
Obviously, numerical convergence towards dynamically unstable scattering states is not possible.
P. Engels and C. Atherton, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.160405 99, 160405 (2007).
A multilayer chip geometry might be employed to avoid decoherence and fragmentation effects that would result from the near vicinity of the condensate to the wires creating the magnetic waveguide.
D. Ferry and S. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, 1997).
For g<0 the peak becomes distorted towards lower values of μ.
R. W. Boyd, Nonlinear Optics (Academic, London, 1992).
V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.58.1256 58, 1256 (1987).
M. Y. Azbel', Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.59.8049 59, 8049 (1999).
C. Mahaux and H. A. Weidenmüller, Shell-Model Approach to Nuclear Reactions (North-Holland, Amsterdam, 1969)
J. J. M. Verbaarschot, H. A. Weidenmüller, and M. R. Zirnbauer, Phys. Rep. PRPLCM 0370-1573 10.1016/0370-1573(85)90070-5 129, 367 (1985).
H. Feshbach, Ann. Phys. (N.Y.) APNYA6 0003-4916 10.1016/0003-4916(58) 90007-1 5, 357 (1958)
H. Feshbach, Ann. Phys. (N.Y.) APNYA6 0003-4916 10.1016/0003-4916(62) 90221-X 19, 287 (1962).
C. Viviescas and G. Hackenbroich, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.67.013805 67, 013805 (2003).
N. Moiseyev, L. D. Carr, B. A. Malomed, and Y. B. Band, J. Phys. B 37, L193 (2004). 0022-3700
D. Witthaut, S. Mossmann, and H. J. Korsch, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/38/8/013 38, 1777 (2005).
L. D. Carr, M. J. Holland, and B. A. Malomed, J. Phys. B JPAPEH 0953-4075 10.1088/0953-4075/38/17/012 38, 3217 (2005).
P. Schlagheck and T. Paul, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.73.023619 73, 023619 (2006).
S. Wimberger, P. Schlagheck, and R. Mannella, J. Phys. B JPAPEH 0953-4075 10.1088/0953-4075/39/3/024 39, 729 (2006)
P. Schlagheck and S. Wimberger, Appl. Phys. B: Lasers Opt. APBOEM 0946-2171 10.1007/s00340-006-2511-8 B86, 385 (2007).
The existence of such a critical nonlinear parameter has also been pointed out in the context of nonlinear optics, see, e.g., and references therein.
K. Rapedius and H.-J. Korsch, e-print arXiv:0706.2826.
L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G. V. Shlyapnikov, and A. Aspect, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.210401 98, 210401 (2007).
T. Köhler and K. Burnett, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.65.033601 65, 033601 (2002).
T. Ernst, T. Paul, and P. Schlagheck (unpublished).
J. Fortágh and C. Zimmermann, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.79.235 79, 235 (2007).
S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.111102 98, 111102 (2007).
D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.5483 85, 5483 (2000).
O. Houde, D. Kadio, and L. Pruvost, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.5543 85, 5543 (2000).
J. A. Stickney and A. A. Zozulya, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.66.053601 66, 053601 (2002).
S. Chen and R. Egger, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.68. 063605 68, 063605 (2003).
M. Vaupel, K. Staliunas, and C. O. Weiss, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.54.880 54, 880 (1996).
I. Teper, Y.-J. Lin, and V. Vuletić, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.97.023002 97, 023002 (2006).
A. Haase, B. Hessmo, and J. Schmiedmayer, Opt. Lett. OPLEDP 0146-9592 10.1364/OL.31.000268 31, 268 (2006).
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++ (Cambridge University Press, Cambridge, 2002).
W. A. Ames, Numerical Methods for Partial Differential Equations (Academic, New York, 1977).
E. Cerboneschi, R. Mannella, E. Arimondo, and L. Salasnich, Phys. Lett. A PYLAAG 0375-9601 10.1016/S0375-9601(98)00732-4 249, 495 (1998).
M. L. Chiofalo, S. Succi, and M. P. Tosi, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.62.7438 62, 7438 (2000).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.