[en] We consider the phase coherent transport of a quasi-one-dimensional beam of Bose-Einstein condensed particles through a disordered potential of length L. Among the possible different types of flow we identified [T. Paul, P. Schlagheck, P. Leboeuf, and N. Pavloff, Phys. Rev. Lett. 98, 210602 (2007)], we focus here on the supersonic stationary regime where Anderson localization exists. We generalize the diffusion formalism of Dorokhov-Mello-Pereyra-Kumar to include interaction effects. It is shown that interactions modify the localization length and also introduce a length scale L* for the disordered region, above which most of the realizations of the random potential lead to time-dependent flows. A Fokker-Planck equation for the probability density of the transmission coefficient that takes this effect into account is introduced and solved. The theoretical predictions are verified numerically for different types of disordered potentials. Experimental scenarios for observing our predictions are discussed.
Disciplines :
Physics
Author, co-author :
Paul, T.
Albert, M.
Schlagheck, Peter ; Université de Liège - ULiège > Département de physique > Physique quantique statistique
Leboeuf, P.
Pavloff, N.
Language :
English
Title :
Anderson localization of a weakly interacting one-dimensional Bose gas
Publication date :
2009
Journal title :
Physical Review. A, Atomic, molecular, and optical physics
ISSN :
1050-2947
eISSN :
1094-1622
Publisher :
American Physical Society, College Park, United States - Maryland
P. W. Anderson, Phys. Rev. 109, 1492 (1958). 10.1103/PhysRev.109.1492
J. Billy, Nature (London) 453, 891 (2008). 10.1038/nature07000
G. Roati, Nature (London) 453, 895 (2008). 10.1038/nature07071
K. Huang and H. F. Meng, Phys. Rev. Lett. 69, 644 (1992). 10.1103/PhysRevLett.69.644
S. Giorgini, L. Pitaevskii, and S. Stringari, Phys. Rev. B 49, 12938 (1994). 10.1103/PhysRevB.49.12938
G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Phys. Rev. A 66, 023603 (2002). 10.1103/PhysRevA.66.023603
D. Clément, P. Bouyer, A. Aspect, and L. Sanchez-Palencia, Phys. Rev. A 77, 033631 (2008). 10.1103/PhysRevA.77.033631
Y. P. Chen, J. Hitchcock, D. Dries, M. Junker, C. Welford, and R. G. Hulet, Phys. Rev. A 77, 033632 (2008). 10.1103/PhysRevA.77.033632
T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325 (1988). 10.1103/PhysRevB.37.325
M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B 40, 546 (1989). 10.1103/PhysRevB.40.546
S. A. Gredeskul and Y. S. Kivshar, Phys. Rep. 216, 1 (1992). 10.1016/0370-1573(92)90023-S
N. Bilas and N. Pavloff, Phys. Rev. Lett. 95, 130403 (2005). 10.1103/PhysRevLett.95.130403
T. Paul, P. Leboeuf, N. Pavloff, K. Richter, and P. Schlagheck, Phys. Rev. A 72, 063621 (2005). 10.1103/PhysRevA.72.063621
T. Paul, P. Schlagheck, P. Leboeuf, and N. Pavloff, Phys. Rev. Lett. 98, 210602 (2007). 10.1103/PhysRevLett.98.210602
C. Menotti and S. Stringari, Phys. Rev. A 66, 043610 (2002). 10.1103/PhysRevA.66.043610
D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. Lett. 85, 3745 (2000). 10.1103/PhysRevLett.85.3745
C. Raman, M. Kohl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 83, 2502 (1999). 10.1103/PhysRevLett.83.2502
R. Onofrio, C. Raman, J. M. Vogels, J. R. Abo-Shaeer, A. P. Chikkatur, and W. Ketterle, Phys. Rev. Lett. 85, 2228 (2000). 10.1103/PhysRevLett.85.2228
P. Engels and C. Atherton, Phys. Rev. Lett. 99, 160405 (2007). 10.1103/PhysRevLett.99.160405
M. Olshanii, Phys. Rev. Lett. 81, 938 (1998). 10.1103/PhysRevLett.81.938
A. D. Jackson, G. M. Kavoulakis, and C. J. Pethick, Phys. Rev. A 58, 2417 (1998). 10.1103/PhysRevA.58.2417
P. Leboeuf and N. Pavloff, Phys. Rev. A 64, 033602 (2001). 10.1103/PhysRevA.64.033602
L. P. Pitaevskii and S. Stringari, J. Low Temp. Phys. 85, 377 (1991). 10.1007/BF00682193
M. Schwartz, Phys. Rev. B 15, 1399 (1977). 10.1103/PhysRevB.15.1399
D. S. Petrov, Ph.D. thesis, University of Amsterdam, 2003
available online at http://www-old.amolf.nl/publications/theses/petrow
A. V. Lopatin and V. M. Vinokur, Phys. Rev. Lett. 88, 235503 (2002). 10.1103/PhysRevLett.88.235503
G. E. Astrakharchik and L. P. Pitaevskii, Phys. Rev. A 70, 013608 (2004). 10.1103/PhysRevA.70.013608
T. Ernst, T. Paul, and P. Schlagheck, e-print arXiv:0905.4750.
V. Hakim, Phys. Rev. E 55, 2835 (1997). 10.1103/PhysRevE.55.2835
H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, England, 1997).
P. Leboeuf, N. Pavloff, and S. Sinha, Phys. Rev. A 68, 063608 (2003). 10.1103/PhysRevA.68.063608
T. Paul, M. Hartung, K. Richter, and P. Schlagheck, Phys. Rev. A 76, 063605 (2007). 10.1103/PhysRevA.76.063605
B. I. Ivlev and N. B. Kopnin, Adv. Phys. 33, 47 (1984). 10.1080/00018738400101641
J. S. Langer and V. Ambegaokar, Phys. Rev. 164, 498 (1967). 10.1103/PhysRev.164.498
Note in particular that condition 11 is always fulfilled in the absence of interaction since in this case the speed of sound is c≡0.
B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984).
J. Fortágh and C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007). 10.1103/RevModPhys.79.235
S. Kraft, A. Gúnther, H. Ott, D. Wharam, C. Zimmermann, and J. Fortágh, J. Phys. B 35, L469 (2002). 10.1088/0953-4075/35/21/102
J. Estève, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. I. Westbrook, and A. Aspect, Phys. Rev. A 70, 043629 (2004) 10.1103/PhysRevA.70.043629
T. Schumm, Eur. Phys. J. D 32, 171 (2005). 10.1140/epjd/e2005-00016-x
D.-W. Wang, M. D. Lukin, and E. Demler, Phys. Rev. Lett. 92, 076802 (2004). 10.1103/PhysRevLett.92.076802
J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications, (Roberts and Company Publishers, Greenwood Village, 2007).
D. Clément, A. F. Varón, J. A. Retter, L. Sanchez-Palencia, A. Aspect and P. Bouyer, New J. Phys. 8, 165 (2006). 10.1088/1367-2630/8/8/165
L. Fallani, C. Fort, and M. Inguscio, Adv. At., Mol., Opt. Phys. 56, 119 (2008).
Equation 36 corresponds to a typical physical situation where the potential seen by the particles is proportional to the intensity of an electric field whose components are random Gaussian variables.
In Ref. this region has been improperly called "Ohmic."
T. N. Antsygina, L. A. Pastur, and V. A. Slyusarev, Fiz. Nizk. Temp. 7, 5 (1981)
[T. N. Antsygina, L. A. Pastur, and V. A. Slyusarev, Sov. J. Low Temp. Phys. 7, 1 (1981)].
I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (John Wiley, New York, 1988).
O. N. Dorokhov, Pis'ma Zh. Eksp. Teor. Fiz. 36, 259 (1982)
[O. N. Dorokhov, JETP Lett. 36, 318 (1982)]
P. A. Mello, P. Pereyra, and N. Kumar, Ann. Phys. (N.Y.) 181, 290 (1988). 10.1016/0003-4916(88)90169-8
V. I. Mel'nikov, Fiz. Tverd. Tela (Leningrad) 23, 782 (1981)
[V. I. Mel'nikov, Sov. Phys. Solid State 23, 444 (1981)].
C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997). 10.1103/RevModPhys. 69.731
P. A. Mello, J. Math. Phys. 27, 2876 (1986). 10.1063/1.527265
C. W. J. Beenakker and J. A. Melsen, Phys. Rev. B 50, 2450 (1994). 10.1103/PhysRevB.50.2450
In order to complete the proof of this equivalence one has to show that the mean value λ =t=L/ Lloc (κ) obtained from Eq. 68 for a sample of length X=L is identical to result 45. This amounts to show that for a potential of form 21 one has | U δ (2κ) | 2 = (2 /m) 2 σL, which is easily obtained.
A. A. Abrikosov, Solid State Commun. 37, 997 (1981). 10.1016/0038- 1098(81)91203-5
B. A. Van Tiggelen, in Diffusive Waves in Complex Media, edited by, J. P. Fouque, (Kluwer Academic Publishers, Dordrecht, 1999), p. 1.
Note that in Ref. the theoretical determination of L□ was obtained using a criterion different from Eq. 80 resulting in a less precise estimate at high V/c.
F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999). 10.1103/PhysRevLett.82.4062
L. Sanchez-Palencia, D. Clement, P. Lugan, P. Bouyer, G. V. Shlyapnikov, and A. Aspect, Phys. Rev. Lett. 98, 210401 (2007). 10.1103/PhysRevLett.98.210401
L. Tessieri, J. Phys. A 35, 9585 (2002). 10.1088/0305-4470/35/45/307
E. Gurevich and O. Kenneth, Phys. Rev. A 79, 063617 (2009). 10.1103/PhysRevA.79.063617
P. Lugan, A. Aspect, L. Sanchez-Palencia, D. Delande, B. Gremaud, C. Muller, and C. Miniatura, Phys. Rev. A 80, 023605 (2009). 10.1103/PhysRevA.80. 023605
A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 (1960).
Note that the value V□ /c=7.95 does not depend on the type of correlation of the disordered potential considered since it is simply the value of V/c for which Eq. 81 admits the solution t□ =1.
W. Guerin, J.-F. Riou, J. P. Gaebler, V. Josse, P. Bouyer, and A. Aspect, Phys. Rev. Lett. 97, 200402 (2006). 10.1103/PhysRevLett.97.200402
N. Pavloff, Phys. Rev. A 66, 013610 (2002). 10.1103/PhysRevA.66.013610
Note that there is a factor of 2 difference between the present definition 14 of κ and the one used in Ref.
Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford, 1997).
D. L. Shepelyansky, Phys. Rev. Lett. 70, 1787 (1993) 10.1103/PhysRevLett. 70.1787
G. Kopidakis, S. Komineas, S. Flach, and S. Aubry, Phys. Rev. Lett. 100, 084103 (2008) 10.1103/PhysRevLett.100.084103
A. S. Pikovsky and D. L. Shepelyansky, Phys. Rev. Lett. 100, 094101 (2008) 10.1103/PhysRevLett.100.094101
S. Fishman, A. Iomin, and K. Mallick, Phys. Rev. E 78, 066605 (2008). 10.1103/PhysRevE.78.066605
S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, England, 1995).
M. V. Berry and S. Klein, Eur. J. Phys. 18, 222 (1997). 10.1088/0143-0807/18/3/017
C. Texier, Ph.D. thesis, Université Paris 6, 1999
available online at http://www.lptms.u-psud.fr/membres/texier/research. html