Animals; Antibodies/chemistry/metabolism; Antibody Affinity; Calorimetry; Camelids, New World; Crystallography, X-Ray; Kinetics; Microscopy, Electron, Transmission; Models, Molecular; Nuclear Magnetic Resonance, Biomolecular; Peptide Library; Protein Binding; Protein Denaturation; Protein Interaction Mapping; Protein Multimerization; Protein Structure, Quaternary; alpha-Synuclein/chemistry/metabolism
Abstract :
[en] The aggregation of the intrinsically disordered protein alpha-synuclein to form fibrillar amyloid structures is intimately associated with a variety of neurological disorders, most notably Parkinson's disease. The molecular mechanism of alpha-synuclein aggregation and toxicity is not yet understood in any detail, not least because of the paucity of structural probes through which to study the behavior of such a disordered system. Here, we describe an investigation involving a single-domain camelid antibody, NbSyn2, selected by phage display techniques to bind to alpha-synuclein, including the exploration of its effects on the in vitro aggregation of the protein under a variety of conditions. We show using isothermal calorimetric methods that NbSyn2 binds specifically to monomeric alpha-synuclein with nanomolar affinity and by means of NMR spectroscopy that it interacts with the four C-terminal residues of the protein. This latter finding is confirmed by the determination of a crystal structure of NbSyn2 bound to a peptide encompassing the nine C-terminal residues of alpha-synuclein. The NbSyn2:alpha-synuclein interaction is mediated mainly by side-chain interactions while water molecules cross-link the main-chain atoms of alpha-synuclein to atoms of NbSyn2, a feature we believe could be important in intrinsically disordered protein interactions more generally. The aggregation behavior of alpha-synuclein at physiological pH, including the morphology of the resulting fibrillar structures, is remarkably unaffected by the presence of NbSyn2 and indeed we show that NbSyn2 binds strongly to the aggregated as well as to the soluble forms of alpha-synuclein. These results give strong support to the conjecture that the C-terminal region of the protein is not directly involved in the mechanism of aggregation and suggest that binding of NbSyn2 could be a useful probe for the identification of alpha-synuclein aggregation in vitro and possibly in vivo.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
De Genst, Erwin J
Guilliams, Tim
Wellens, Joke
O'Day, Elizabeth M
Waudby, Christopher A
Meehan, Sarah
Dumoulin, Mireille ; Université de Liège - ULiège > Département des sciences de la vie > Enzymologie et repliement des protéines
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Chiti F., Dobson C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75:333-366.
Baba M., Nakajo S., Tu P.H., Tomita T., Nakaya K., Lee V.M., et al. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am. J. Pathol. 1998, 152:879-884.
Cookson M.R. The biochemistry of Parkinson's disease. Annu. Rev. Biochem. 2005, 74:29-52.
Moore D.J., West A.B., Dawson V.L., Dawson T.M. Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci. 2005, 28:57-87.
Uversky V.N., Eliezer D. Biophysics of Parkinson's disease: structure and aggregation of alpha-synuclein. Curr. Protein Pept. Sci. 2009, 10:483-499.
Chandra S., Gallardo G., Fernández-Chacón R., Schlüter O.M., Südhof T.C. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 2005, 123:383-396.
Conway K.A., Rochet J.C., Bieganski R.M., Lansbury P.T. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 2001, 294:1346-1349.
Rochet J.C., Conway K.A., Lansbury P.T. Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse alpha-synuclein. Biochemistry 2000, 39:10619-10626.
Conway K.A., Lee S.J., Rochet J.C., Ding T.T., Williamson R.E., Lansbury P.T. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA 2000, 97:571-576.
Volles M.J., Lansbury P.T. Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson's disease. Biochemistry 2003, 42:7871-7878.
Bodner C.R., Maltsev A.S., Dobson C.M., Bax A. Differential phospholipid binding of alpha-synuclein variants implicated in Parkinson's disease revealed by solution NMR spectroscopy. Biochemistry 2010, 49:862-871.
Bodner C.R., Dobson C.M., Bax A. Multiple tight phospholipid-binding modes of alpha-synuclein revealed by solution NMR spectroscopy. J. Mol. Biol. 2009, 390:775-790.
Lashuel H.A., Hartley D., Petre B.M., Walz T., Lansbury P.T. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 2002, 418:291.
Kim H.Y., Cho M.K., Kumar A., Maier E., Siebenhaar C., Becker S., et al. Structural properties of pore-forming oligomers of alpha-synuclein. J. Am. Chem. Soc. 2009, 131:17482-17489.
Caughey B., Lansbury P.T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 2003, 26:267-298.
Tartaglia G.G., Vendruscolo M. The Zyggregator method for predicting protein aggregation propensities. Chem. Soc. Rev. 2008, 37:1395-1401.
Bucciantini M., Giannoni E., Chiti F., Baroni F., Formigli L., Zurdo J., et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002, 416:507-511.
Stefani M., Dobson C.M. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 2003, 81:678-699.
Eliezer D. Biophysical characterization of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 2009, 19:23-30.
Dumoulin M., Dobson C.M. Probing the origins, diagnosis and treatment of amyloid diseases using antibodies. Biochimie 2004, 86:589-600.
Muyldermans S., Baral T.N., Retamozzo V.C., De Baetselier P., De Genst E., Kinne J., et al. Camelid immunoglobulins and nanobody technology. Vet. Immunol. Immunopathol. 2009, 128:178-183.
De Genst E., Saerens D., Muyldermans S., Conrath K. Antibody repertoire development in camelids. Dev. Comp. Immunol. 2006, 30:187-198.
Holliger P., Hudson P.J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 2005, 23:1126-1136.
Muyldermans S., Cambillau C., Wyns L. Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem. Sci. 2001, 26:230-235.
Chan P.H., Pardon E., Menzer L., De Genst E., Kumita J.R., Christodoulou J., et al. Engineering a camelid antibody fragment that binds to the active site of human lysozyme and inhibits its conversion into amyloid fibrils. Biochemistry 2008, 47:11041-11054.
Dumoulin M., Last A.M., Desmyter A., Decanniere K., Canet D., Larsson G., et al. A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature 2003, 424:783-788.
Koide S. Engineering of recombinant crystallization chaperones. Curr. Opin. Struct. Biol. 2009, 19:449-457.
Messer A., Lynch S.M., Butler D.C. Developing intrabodies for the therapeutic suppression of neurodegenerative pathology. Expert Opin. Biol. Ther. 2009, 9:1189-1197.
Kirchhofer A., Helma J., Schmidthals K., Frauer C., Cui S., Karcher A., et al. Modulation of protein properties in living cells using nanobodies. Nat. Struct. Mol. Biol. 2010, 17:133-138.
Paik S.R., Shin H.J., Lee J.H., Chang C.S., Kim J. Copper(II)-induced self-oligomerization of alpha-synuclein. Biochem. J. 1999, 340:821-828.
Uversky V.N., Li J., Fink A.L. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure. J. Biol. Chem. 2001, 276:44284-44296.
Binolfi A., Rasia R.M., Bertoncini C.W., Ceolin M., Zweckstetter M., Griesinger C., et al. Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement. J. Am. Chem. Soc. 2006, 128:9893-9901.
Binolfi A., Lamberto G.R., Duran R., Quintanar L., Bertoncini C.W., Souza J.M., et al. Site-specific interactions of Cu(II) with alpha and beta-synuclein: bridging the molecular gap between metal binding and aggregation. J. Am. Chem. Soc. 2008, 130:11801-11812.
Antony T., Hoyer W., Cherny D., Heim G., Jovin T.M., Subramaniam V. Cellular polyamines promote the aggregation of alpha-synuclein. J. Biol. Chem. 2003, 278:3235-3240.
Goers J., Uversky V.N., Fink A.L. Polycation-induced oligomerization and accelerated fibrillation of human alpha-synuclein in vitro. Protein Sci. 2003, 12:702-707.
Hoyer W., Cherny D., Subramaniam V., Jovin T.M. Impact of the acidic C-terminal region comprising amino acids 109-140 on alpha-synuclein aggregation in vitro. Biochemistry 2004, 43:16233-16242.
Hoyer W., Cherny D., Subramaniam V., Jovin T.M. Rapid self-assembly of alpha-synuclein observed by in situ atomic force microscopy. J. Mol. Biol. 2004, 340:127-139.
Fernández C.O., Hoyer W., Zweckstetter M., Jares-Erijman E.A., Subramaniam V., Griesinger C., Jovin T.M. NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation. EMBO J. 2004, 23:2039-2046.
Rivers R.C., Kumita J.R., Tartaglia G.G., Dedmon M.M., Pawar A., Vendruscolo M., et al. Molecular determinants of the aggregation behavior of alpha- and beta-synuclein. Protein Sci. 2008, 17:887-898.
Bertoncini C.W., Jung Y.S., Fernandez C.O., Hoyer W., Griesinger C., Jovin T.M., Zweckstetter M. Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc. Natl Acad. Sci. USA 2005, 102:1430-1435.
Dedmon M.M., Lindorff-Larsen K., Christodoulou J., Vendruscolo M., Dobson C.M. Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J. Am. Chem. Soc. 2005, 127:476-477.
Rospigliosi C.C., McClendon S., Schmid A.W., Ramlall T.F., Barré P., Lashuel H.A., Eliezer D. E46K Parkinson's-linked mutation enhances C-terminal-to-N-terminal contacts in alpha-synuclein. J. Mol. Biol. 2009, 388:1022-1032.
Rekas A., Adda C.G., Andrew Aquilina J., Barnham K.J., Sunde M., Galatis D., et al. Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity. J. Mol. Biol. 2004, 340:1167-1183.
Dedmon M.M., Christodoulou J., Wilson M.R., Dobson C.M. Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. J. Biol. Chem. 2005, 280:14733-14740.
Grimminger-Marquardt V., Lashuel H.A. Structure and function of the molecular chaperone Hsp104 from yeast. Biopolymers 2010, 93:252-276.
Dumoulin M., Conrath K., Van Meirhaeghe A., Meersman F., Heremans K., Frenken L.G., et al. Single-domain antibody fragments with high conformational stability. Protein Sci. 2002, 11:500-515.
Velázquez-Campoy A., Ohtaka H., Nezami A., Muzammil S., Freire E. Isothermal titration calorimetry. Curr. Protoc. Cell. Biol. 2004, Chapter 17, Unit. 17, 8.
Evans J. Biomolecular NMR Spectroscopy 1995, 44. Oxford University Press, Oxford, UK. 1st edit.
Bermel W., Bertini I., Felli I.C., Lee Y.M., Luchinat C., Pierattelli R. Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J. Am. Chem. Soc. 2006, 128:3918-3919.
Murphy K.P., Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv. Protein Chem. 1992, 43:313-361.
Vuchelen A., O'Day E., De Genst E., Pardon E., Wyns L., Dumoulin M., et al. (1)H, (13)C and (15)N assignments of a camelid nanobody directed against human alpha-synuclein. Biomol. NMR Assign. 2009, 3:231-233.
Padlan E.A. Anatomy of the antibody molecule. Mol. Immunol. 1994, 31:169-217.
Cavanagh J., Fairbrother W.J., Palmer A.G., Rance M., Skelton N.J. Protein NMR Spectroscopy, Principles and Practice 2007, 725. Elsevier Academic Press, USA, Boston, MA. 2nd edit.
Ban T., Hamada D., Hasegawa K., Naiki H., Goto Y. Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 2003, 278:16462-16465.
Matulis D., Lovrien R.E. 1-Anilino-8-naphtalene sulphonate anion-protein binding depends primarily on ion-pair formation. Biophys. J. 1998, 74:422-429.
Jaya N., Garcia V., Vierling E. Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proc. Natl Acad. Sci. USA 2009, 106:15604-15609.
Chen D.H., Luke K., Zhang J., Chiu W., Wittung-Stafshede P. Location and flexibility of the unique C-terminal tail of Aquifex aeolicus co-chaperonin protein 10 as derived by cryo-electron microscopy and biophysical techniques. J. Mol. Biol. 2008, 381:707-717.
Lindner R.A., Kapur A., Mariani M., Titmuss S.J., Carver J.A. Structural alterations of alpha-crystallin during its chaperone action. Eur. J. Biochem. 1998, 258:170-183.
Pineda J.R., Callender R., Schwartz S.D. Ligand binding and protein dynamics in lactate dehydrogenase. Biophys. J. 2007, 93:1474-1483.
Vilar M., Chou H.T., Lührs T., Maji S.K., Riek-Loher D., Verel R., et al. The fold of alpha-synuclein fibrils. Proc. Natl Acad. Sci. USA 2008, 105:8637-8642.
Qin Z., Hu D., Han S., Hong D.P., Fink A.L. Role of different regions of alpha-synuclein in the assembly of fibrils. Biochemistry 2007, 46:13322-13330.
Lauwereys M., Arbabi Ghahroudi M., Desmyter A., Kinne J., Hölzer W., De Genst E., et al. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 1998, 17:3512-3520.
Conrath K.E., Lauwereys M., Galleni M., Matagne A., Frere J.M., Kinne J., et al. Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob. Agents Chemother. 2001, 45:2807-2812.
Hoyer W., Antony T., Cherny D., Heim G., Jovin T.M., Subramaniam V. J. Mol. Biol. 2002, 322:383-393.
Leslie A.G. The integration of macromolecular diffraction data. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2006, 62:48-57.
Evans P. Scaling and assessment of data quality. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2006, 62:72-82.
Spinelli S., Frenken L., Bourgeois D., de Ron L., Bos W., Verrips T., et al. The crystal structure of a llama heavy chain variable domain. Nat. Struct. Biol. 1996, 3:752-757.
Perrakis A., Morris R., Lamzin V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 1999, 6:458-463.
Murshudov G.N., Vagin A.A., Dodson E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1997, 53:240-255.
Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60:2126-2132.
Reynolds C., Damerell D., Jones S. ProtorP: a protein-protein interaction analysis server. Bioinformatics 2009, 25:413-414.
Delaglio F., Grzesiek S., Vuister G.W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 1995, 6:277-293.
Goddard, T. D. & Kneller, D. G. SPARKY 3, University of California, San Francisco.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.