[en] Modern electrophysiological studies in animals show that the spectrum of neural oscillations encoding relevant information is broader than previously thought and that many diverse areas are engaged for very simple tasks. However, EEG-based brain-computer interfaces (BCI) still employ as control modality relatively slow brain rhythms or features derived from preselected frequencies and scalp locations. Here, we describe the strategy and the algorithms we have developed for the analysis of electrophysiological data and demonstrate their capacity to lead to faster accurate decisions based on linear classifiers. To illustrate this strategy, we analyzed two typical BCI tasks. (1) Mu-rhythm control of a cursor movement by a paraplegic patient. For this data, we show that although the patient received extensive training in mu-rhythm control, valuable information about movement imagination is present on the untrained high-frequency rhythms. This is the first demonstration of the importance of high-frequency rhythms in imagined limb movements. (2) Self-paced finger tapping task in three healthy subjects including the data set used in the BCI-2003 competition. We show that by selecting electrodes and frequency ranges based on their discriminative power, the classification rates can be systematically improved with respect to results published thus far.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Grave de Peralta Menendez, Rolando
Noirhomme, Quentin ; Université de Liège - ULiège > Centre de recherches du cyclotron
Cincotti, Febo
Mattia, Donatella
Aloise, Fabio
Gonzalez Andino, Sara
Language :
English
Title :
Modern electrophysiological methods for brain-computer interfaces.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
M. A. Lebedev M. A. L. Nicolelis nicoleli@neuro.duke.edu Brain-machine interfaces: past, present and future. Trends in Neurosciences 29 9 2006 536 546
J. R. Wolpaw wolpaw@wadsworth.org N. Birbaumer D. J. McFarland G. Pfurtscheller T. M. Vaughan Brain-computer interfaces for communication and control. Clinical Neurophysiology 113 6 2002 767 791
J. N. Sanes Jerome_Sanes@Brown.edu J. P. Donoghue John_Donoghue@Brown.edu Plasticity and primary motor cortex. Annual Review of Neuroscience 23 2000 393 415
M. Graziano Graziano@princeton.edu The organization of behavioral repertoire in motor cortex. Annual Review of Neuroscience 29 2006 105 134
S. L. González Andino M. M. Murray Micah.murray@hospvd.ch J. J. Foxe R. Grave de Peralta Menendez Rolando.Grave@hcuge.ch How single-trial electrical neuroimaging contributes to multisensory research. Experimental Brain Research 166 3-4 2005 298 304
R. Grave de Peralta Menendez Rolando.Grave@hcuge.ch S. González Andino L. Perez P. W. Ferrez J. D. R. Millán Non-invasive estimation of local field potentials for neuroprosthesis control. Cognitive Processing 6 1 2005 59 64
S. L. González Andino Sara.GonzalezAndino@hcuge.ch C. M. Michel G. Thut T. Landis R. Grave de Peralta Menendez Prediction of response speed by anticipatory high-frequency (gamma band) oscillations in the human brain. Human Brain Mapping 24 1 2005 50 58
S. L. González Andino Sara.GonzalezAndino@hcuge.ch R. Grave de Peralta Menendez A. Khateb A. J. Pegna G. Thut T. Landis A glimpse into your vision. Human Brain Mapping 28 7 2006 614 624
S. L. Gonzalez R. Grave de Peralta Menendez G. Thut J. D. R. Millán P. Morier T. Landis Very high frequency oscillations (VHFO) as a predictor of movement intentions. NeuroImage 32 1 2006 170 179
J. Rickert rickert@biologie.uni-freiburg.de S. Cardoso de Oliveira E. Vaadia A. Aertsen S. Rotter G. Mehring Encoding of movement direction in different frequency ranges of motor cortical local field potentials. Journal of Neuroscience 25 39 2005 8815 8824
E. C. Leuthardt ericleuhardt@sbcglobal.net K. J. Miller G. Schalk R. P. N. Rao J. G. Ojemann Electrocorticography-based brain computer interface - the seattle experience. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14 2 2006 194 198
B. Blankertz benjamin.blankertz@first.fraunhofer.de G. Dornhege C. Schäfer Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11 2 2003 127 131
B. Blankertz benjamin.blankertz@first.fraunhofer.de K.-R. Müller G. Curio The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Transactions on Biomedical Engineering 51 6 2004 1044 1051
J. R. Wolpaw wolpaw@wadsworth.org D. J. McFarland Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences of the United States of America 101 51 2004 17849 17854
J. D. R. Millán jose.millan@jrc.it M. Franzé J. Mourĩo F. Cincotti F. Babiloni Relevant EEG features for the classification of spontaneous motor-related tasks. Biological Cybernetics 86 2 2002 89 95
J. D. R. Millán jose.millan@idiap.ch F. Renkens J. Mourĩo W. Gerstner Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Transactions on Biomedical Engineering 51 6 2004 1026 1033
N. Birbaumer A. Kubler N. Ghanayim The thought translation device (TTD) for completely paralyzed patients. IEEE Transactions on Rehabilitation Engineering 8 2 2000 190 193
A. Bragin J. Engel Jr. engel@ucla.edu C. L. Wilson I. Fried G. Buzsáki High-frequency oscillations in human brain. Hippocampus 9 2 1999 137 142
W. J. Freeman dfreeman@berkeley.edu Definitions of state variables and state space for brain-computer interface - part 1: multiple hierarchical levels of brain function. Cognitive Neurodynamics 1 1 2007 3 14
D. J. Thomson Spectrum estimation and harmonic analysis. Proceedings of the IEEE 70 9 1982 1055 1096
B. Pesaran J. S. Pezaris M. Sahani P. P. Mitra R. A. Andersen Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neuroscience 5 8 2002 805 811
G. Fung gfung@cs.wisc.edu O. L. Mangasarian olvi@cs.wisc.edu Proximal support vector machine classifiers. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '01) San Francisco, Calif, USA 2001 77 86
O. L. Mangasarian olvi@cs.wisc.edu E. W. Wild wildt@cs.wisc.edu Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 1 2006 69 74
J. K. Chapin chapinj@mcphu.edu K. A. Moxon R. S. Markowitz M. A. L. Nicolelis Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neuroscience 2 7 1999 664 670
A. B. Schwartz abs21@pitt.edu X. T. Cui D. J. Weber D. W. Moran Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52 1 2006 205 220
G. Kreiman kreiman@mit.edu C. P. Hung A. Kraskov R. Q. Quiroga T. Poggio J. J. DiCarlo Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron 49 3 2006 433 445
S. Murakami murakami@pharma2.med.osaka-u.ac.jp Y. Okada Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. Journal of Physiology 575 3 2006 925 936
S. N. Baker snb11@cam.ac.uk G. Curio R. N. Lemon EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts. Journal of Physiology 550 2 2003 529 534
G. Curio Linking 600 Hz "spikelike" EEG/MEG wavelets (σ-bursts) to cellular substrates: concepts and caveats. Journal of Clinical Neurophysiology 17 4 2000 377 396
D. Schmitz schmitz@cmp.ucsf.edu S. Schuchmann A. Fisahn Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31 5 2001 831 840
E. C. Leuthardt G. Schalk J. R. Wolpaw J. G. Ojemann D. W. Moran A brain-computer interface using electrocorticographic signals in humans. Journal of Neural Engineering 1 2 2004 63 71
M. Congedo Marco.Congedo@gMail.com F. Lotte A. Lécuyer Classification of movement intention by spatially filtered electromagnetic inverse solutions. Physics in Medicine and Biology 51 8 2006 1971 1989
R. G. Grave de Peralta Menendez Rolando.Grave@hcuge.ch S. González Andino L. Perez P. W. Ferrez J. D. R. Millán Non-invasive estimation of local field potentials for neuroprosthesis control. Cognitive Processing 6 1 2005 59 64
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.