[en] The Middle Miocene was one of the last warm periods of the Neogene, culminating with the Middle Miocene Climatic Optimum (MMCO, approximatively 17–15 Ma). Several proxy-based reconstructions support warmer and more humid climate during the MMCO. The mechanisms responsible for the warmer climate at the MMCO and particularly the role of the atmospheric carbon dioxide are still highly debated. Here we carried out a series of sensitivity experiments with the model of intermediate complexity Planet Simulator, investigating the contributions of the absence of ice on the continents, the opening of the Central American and Eastern Tethys Seaways, the lowering of the topography on land, the effect of various atmospheric CO2 concentrations and the vegetation feedback.
Our results show that a higher than present-day CO2 concentration is necessary to generate a warmer climate at all latitudes at the Middle Miocene, in agreement with the terrestrial proxy reconstructions which suggest high atmospheric CO2 concentrations at the MMCO. Nevertheless, the changes in sea-surface conditions, the lowering of the topography on land and the vegetation feedback also produce significant local warming that may, locally, even be stronger than the CO2 induced temperature increases. The lowering of the topography leads to a more zonal atmospheric circulation and allows the westerly flow to continue over the lowered Plateaus at mid-latitudes. The reduced height of the Tibetan Plateau notably prevents the development of a monsoon-like circulation, whereas the reduction of elevations of the North American and European reliefs strongly increases precipitation from northwestern to eastern Europe.
The changes in vegetation cover contribute to maintain and even to intensify the warm and humid conditions produced by the other factors, suggesting that the vegetation-climate interactions could help to improve the model-data comparison.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Henrot, Alexandra ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Favre, Eric ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Butzin, Martin
Ouberdous, Mohamed ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER) - Modélisation du climat et des cycles biogéochimiques
Munhoven, Guy ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) - Pétrologie, géochimie endogènes et pétrophysique
Language :
English
Title :
Effects of CO2, continental distribution, topography and vegetation changes on the climate at the Middle Miocene: a model study
Bice, K. L., Scotese, C. R., Seidov, D., and Barron, E. J.: Quantifying the role of geographic changes in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models, Earth Planet. Sci. Lett., 161, 295-310, 2000.
Bruch, A. A., Uhl, D., and Mosbrugger, V.: Miocene climate in Europe. Patterns and evolution: a first synthesis of NECLIME, Palaeogeogr., Palaeoclimatol., Palaeoecol., 253, 1-7, 2007.
Butzin, M., Lohmann, G., and Bickert, T.: Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records, Paleoceanography, submitted, 2010.
Currie, B. S., Rowley, D. B., and Tabor, N. J.: Middle Miocene pale-oaltimetry of Southern Tibet: implications for the role of mantle thickening and delamination in the Himalayan orogen, Geology, 33, 181-184, 2005.
Diester-Haass, L., Billups, K., Gröcke, D., François, L., Lefebvre, V., and Emeis, K.: Mid-Miocene paleoproductivity in the Atlantic Ocean and Implications for the Global Carbon Cycle, Pale-oceanography, 24, PA1209, doi:10.1029/2008PA001605, 2009.
Dutton, J. F. and Barron, E. J.: Miocene to present vegetation changes: A possible piece of the Cenozoic puzzle, Geology, 25, 39-41, 1997.
Flower, B. P. and Kennett, J. P.: The Middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling, Palaeogeogr., Palaeoclimatol., Palaeoecol., 108, 537-555, 1994.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.: Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, 2007.
Fraedrich, K., Kirk, E., and Lunkeit, F.: PUMA Portable University Model of the Atmosphere, Tech. Rep. 16, Meteorologisches Institut, Universität Hamburg, Hamburg, 1998.
Fraedrich, K., Jansen, H., Kirk, E., Luksch, U., and Lunkeit, F.: The Planet Simulator: Towards a user friendly model, Meteorol. Z., 14, 299-304, doi:10.1127/0941-2948/2005/0043, 2005a.
Fraedrich, K., Jansen, H., Kirk, E., and Lunkeit, F.: The Planet Simulator: Green planet and desert world, Meteorol. Z., 14, 305-314, doi:10.1127/0941-2948/2005/0044, 2005b.
François, L., Ghislain, L., Otto, D., and Micheels, A.: Late Miocene vegetation reconstruction with the CARAIB model, Palaeogeogr., Palaeoclimatol., Palaeoecol., 238, 302-320, 2006. (Pubitemid 44175434)
Galy, V., François, L., France-Lanord, C., Faure, P., Kudrass, H., Palhol, F., and Singh, S. K.: C4 plants decline in the Himalayan basin since the Last Glacial Maximum, Quat. Sci. Rev., 27, 1396-1409, 2008.
Gladenkov, A., Oleinik, A. E., Marincovich, L. J., and Barinov, K. B.: A refined age for the earliest opening of the bering strait, Palaeogeogr., Palaeoclimatol., Palaeoecol., 183, 321-328, 2002.
Gregory-Wodzicki, K. M.: Uplift history of the Central and Northern Andes: A review, Geol. Soc. Am. Bull., 112, 1091-1105, 2000.
Grosfeld, K., Lohmann, G., Rimbu, N., Fraedrich, K., and Lunkeit, F.: Atmospheric multidecadal variations in the North Atlantic realm: proxy data, observations, and atmospheric circulation model studies, Clim. Past, 3, 39-50, 2007.
Haberkorn, K., Sielmann, F., Lunkeit, F., Kirk, E., Schneidereit, A., and Fraedrich, K.: Planet Simulator Climate, Scientific report, Meteorological Institute, University of Hamburg, Hamburg, Germany, http://www.mi.uni-hamburg. de/Downloads-un.245.0.html, 2009.
Harris, N.: The elevation history of the Tibetan Plateau and its implication for the Asian monsoon, Palaeogeogr., Palaeoclimatol., Palaeoecol., 241, 4-15, 2006.
Henderiks, J. and Pagani, M.: Coccolithophore cell size and the Paleogene decline in atmospheric CO2, Earth Planet. Sci. Lett., 269, 575-583, 2008.
Henrot, A.-J.: Impacts des changements des propriétés de la surface terrestre sur le climat du dernier maximum glaciaire. Etude avec un modèle climatique, Master Thesis, University of Liège, Liège, Belgium, 2007.
Henrot, A.-J., François, L., Brewer, S., and Munhoven, G.: Impacts of land surface properties and atmospheric CO2 on the Last Glacial Maximum climate: a factor separation analysis, Clim. Past, 5, 183-202, 2009.
Herold, N., Seton, M., Müller, R. D., You, Y., and Huber, M.: Middle Miocene tectonic boundary conditions for use in climate models, Geochem., Geophys., Geosyst., 9(10), Q10009, doi:10.1029/2008GC002046, 2008.
Herold, N., You, Y., Müller, R. D., and Seton, M.: Climate model sensitivity to change in Miocene paleotopography, Austral. J. Earth Sci., 56, 1049-1059, 2009.
Jimenez-Moreno, G. and Suc, J.-P.: Middle Miocene latitudinal climatic gradient in Western Europe: Evidence from pollen records, Palaeogeogr., Palaeoclimatol., Palaeoecol., 253, 208-225, 2007.
Junge, M. M., Lunkeit, F., Fraedrich, K., Gayler, V., Blender, R., and Luksch, U.: A world without Greenland: impacts on Northern Hemisphere circulation in low and high resolution models, Climate Dyn., 24, 297-307, 2005.
Kuhlemann, J., Dunkl, I., Brügel, A., Spiegel, C., and Frisch, W.: From source terrains of the Eastern Alps to the Molasse Basin: Detrial record of non-steady-state exhumation, Tectonophysics, 413, 301-316, 2006.
Kürschner, W. M., Kvacek, Z., and Dilcher, D. L.: The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems, PNAS, 105, 449-453, 2008.
Kutzbach, J. E., Ruddiman, W. F., and Prell, W. L.: Sensitivity of Climate to late Cenozoic Uplift in Southern Asia and the American West: Numerical Experiments, J. Geophys. Res., 94, 393-407, 1989.
Laurent, J.-M., François, L., Bar-Hen, A., Bel, L., and Cheddadi, R.: European Bioclimatic Affinity Groups: data-model comparisons, Global Planet. Change, 61, 28-40, 2008.
Lunt, D. J., Valdes, P. J., Haywood, A., and Rutt, I. C.: Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation, Climate Dyn., 30, 1-18, 2008.
Maier-Reimer, E., Mikolajewicz, U., and Hasselmann, K.: Mean Circulation of the Hamburg LSG OGCM and Its Sensitivity to the Thermohaline Surface Forcing, J. Phys. Oceanog., 23, 731-757, 1993.
Micheels, A., Bruch, A., and Mosbrugger, V.: Miocene climate modelling sensitivity experiments for different CO2 concentrations, Palaeontologia Electronica, 12, 2009a.
Micheels, A., Eronen, J., and Mosbrugger, V.: The Late Miocene climate response to a modern Sahara desert, Global Planet. Change, 67, 193-204, 2009b.
Mosbrugger, V., Utescher, T., and Dilcher, D. L.: Cenozoic continental climatic evolution of Central Europe, Proc. Nat. Acad. Sci., 102, 14964-14969, 2005.
Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of radiative forcing due to well mixed greenhouse gases, Geophys. Res. Lett., 25(14), 2715-2718, 1998.
New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution data set of surface climate over global land areas, Clim. Res., 21, 1-25, 2002.
Okumura, Y. M., Deser, C., Hu, A., Timmermann, A., and Xie, S-P.: North Pacific Climate Response to Freshwater Forcing in the Subarctic North Atlantic: Oceanic and Atmospheric Pathways, J. Climate, 22, 1424-1445, 2009.
Otto, D., Rasse, D., Kaplan, J., Warnant, P., and François, L.: Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures, Global Planet. Change, 33, 117-138, 2002.
Pagani, M., Arthur, M. A., and Freeman, K. H.: Miocene evolution of atmospheric carbon dioxide, Paleoceanography, 14, 273-292, 1999.
Pagani, M., Zhonghui, L., LaRiviere, J., and Ravelo, A. C.: High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations, Nat. Geosci., 3, 27-30, 2010.
Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695-699, 2000.
Pearson, P. N., van Dongen, B. E., Nicholas, C. J., Pancost, R. D., Schouten, S., Singano, J. M., and Wade, B. S.: Stable warm tropical climate through the Eocene Epoch, Geology, 35, 211-214, 2007.
Pekar, S. F. and DeConto, R. M.: High-resolution ice-volume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica, Palaeogeogr., Palaeoclimatol., Palaeoecol., 231, 101-109, 2006.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) Model and GRACE, Annu. Rev. Earth Planet. Sci., 32, 49-111, 2004.
Retallack, G. J.: Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle Miocene greenhouse spike, Palaeogeogr., Palaeoclimatol., Palaeoecol., 281, 57-65, 2009.
Romanova, V., Lohmann, G., and Grosfeld, K.: Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates, Clim. Past, 2, 31-42, 2006.
Ruddiman, W. F.: Tectonic Uplift and Climate Change, Plenum Press, New York, NY, 1997.
Schneider, B. and Schmittner, A.: Simulating the impact of the Panamanian seaway closure on ocean circulation, marine productivity and nutrient cycling, Earth Planet. Sci. Lett., 246, 367-380, 2006.
Shellito, C. J., Sloan, L. C., and Huber, M.: Climate model sensitivity to atmospheric CO2 levels in the Early-Middle Paleogene, Palaeogeogr., Palaeoclimatol., Palaeoecol., 193, 113-123, 2003.
Tong, J. A., You, Y., Müller, R. D., and Seton, M.: Climate model sensitivity to atmospheric CO2 concentrations for the middle Miocene, Global Planet. Change, 67, 129-140, 2009.
Tschuck, P., Chauvin, F., Dong, B., and Arpe, K.: Impact of seasurface temperature anomalies in the Equatorial Indian Ocean and Western Pacific on the Asian summer monsoon in three general circulation models, Int. J. Climatol., 24, 181-191, 2004.
Utescher, T., Mosbrugger, V., and Ashraf, A.: Terrestrial climate evolution in Northwest Germany over the last 25 million years, Palaeogeogr., Palaeoclimatol., Palaeoecol., 15, 430-449, 2000.
Utescher, T., Erdei, B., François, L., and Mosbrugger, V.: Tree diversity in the Miocene forests of Western Eurasia, Palaeogeogr., Palaeoclimatol., Palaeoecol., 253, 226-250, 2007.
Van Dam, J. A.: Geographic and temporal patterns in the late Neogene (12-3 Ma) aridification of Europe. The use of small mammals as paleoprecipitation proxies, Palaeogeogr., Palaeoclimatol., Palaeoecol., 238, 190-218, 2006.
Von der Heydt, A. and Dijkstra, H. A.: Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene, Paleoceanography, 21, PA1011, 2006.
Von der Heydt, A. and Dijkstra, H. A.: The effect of ocean gateways on ocean circulation patterns in the Cenozoic, Global Planet. Change, 62, 132-146, 2008.
Wang, Y., Deng, T., and Biasatti, D.: Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma, Geology, 34, 309-312, 2006.
Williams, M., Haywood, A. M., Taylor, S. P., Valdes, P. J., Sellwood, B. W., and Hillenbrand, C. D.: Evaluating the efficacy of planktonic foraminifer calcite δ18O data for sea surface temperature reconstruction for the Late Miocene, Geobios, 38(6), 843-863, 2005.
You, Y., Huber, M., Müller, R. D., Poulsen, C. J., and Ribbe, J.: Simulation of the Middle Miocene Climate Optimum, Geophys. Res. Lett., 36, L04702, doi:10.1029/2008GL036571, 2009.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms and aberrations in global climate 65 Ma to present, Science, 292, 686-693, 2001.