Dissolved inorganic carbon dynamics and air-sea carbon dioxide fluxes during coccolithophore blooms in the northwest European continental margin (northern Bay of Biscay)
[en] We report a data set of dissolved inorganic carbon (DIC) obtained during three cruises in the northern Bay of Biscay carried out in June 2006, May 2007, and May 2008. During these cruises, blooms of the coccolithophore Emiliania huxleyi occurred, as indicated by patches of high reflectance on remote sensing images, phytoplankton pigment signatures, and microscopic examinations. Total alkalinity showed a nonconservative behavior as a function of salinity due to the cumulative effect of net community calcification (NCC) on seawater carbonate chemistry during bloom development. The cumulative effect of NCC and net community production (NCP) on DIC and the partial pressure of CO2 (pCO(2)) were evaluated. The decrease of DIC (and increase of pCO(2)) due to NCC was overwhelmingly lower than the decrease of DIC (and decrease of pCO(2)) due to NCP (NCC: NCP << 1). During the cruises, the northern Bay of Biscay acted as a sink of atmospheric CO2 (on average similar to-9.7 mmol C m(-2) d(-1) for the three cruises). The overall effect of NCC in decreasing the CO2 sink during the cruises was low (on average similar to 12% of total air-sea CO2 flux). If this is a general feature in naturally occurring phytoplankton blooms in the North Atlantic Ocean (where blooms of coccolithophores are the most intense and recurrent), and in the global ocean, then the potential feedback on increasing atmospheric CO2 of the projected decrease of pelagic calcification due to thermodynamic CO2 "production" from calcification is probably minor compared to potential feedbacks related to changes of NCP.
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Chou, Lei; Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium
De Bodt, Caroline; Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium
Harlay, Jérôme ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Borges, Alberto ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Language :
English
Title :
Dissolved inorganic carbon dynamics and air-sea carbon dioxide fluxes during coccolithophore blooms in the northwest European continental margin (northern Bay of Biscay)
Publication date :
2010
Journal title :
Global Biogeochemical Cycles
ISSN :
0886-6236
eISSN :
1944-9224
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Abril, G., H. Etcheber, P. LeHir, P. Bassoulet, B. Boutier, and M. Frankignoulle (1999), Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde, France), Limnol. Oceanogr., 44(5), 1304-1315.
Abril, G., H. Etcheber, B. Delille, M. Frankignoulle, and A. V. Borges (2003), Carbonate dissolution in the turbid and eutrophic Loire estuary, Mar. Ecol.-Prog. Ser., 259, 129-138.
Anderson, L. A., and J. L. Sarmiento (1994), Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cycles, 8(1), 65-80, doi:10.1029/93GB03318. (Pubitemid 24402983)
Archer, D. E., H. Kheshgi, and E. Maier-Reimer (1998), The dynamics of fossil fuel CO2 neutralization by marine CaCO3, Global Biogeochem. Cycles, 12(2), 259-276, doi:10.1029/98GB00744.
Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham (2002), A new, mechanistic model for organic carbon fluxes in the ocean: based on the quantitative association of POC with ballast minerals, Deep Sea Res. II, 49, 219-236.
Bacastow, R., and E. Maier-Reimer (1990), Ocean-circulation model of the carbon cycle, Clim. Dyn., 4, 95-125.
Balch, W. M., H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth (2005), Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data, J. Geophys. Res., 110, C07001, doi:10.1029/2004JC002560. (Pubitemid 41320248)
Balch, W. M., D. Drapeau, B. Bowler, and E. Booth (2007), Prediction of pelagic calcification rates using satellite measurements, Deep Sea Res. II, 54, 478-495.
Banse, K. (1994), Uptake of inorganic carbon and nitrate by marine plankton and the Redfield Ratio, Global Biogeochem. Cycles, 8(1), 81-84, doi:10.1029/93GB02865. (Pubitemid 24402984)
Barker, S., J. A. Higgins, and H. Elderfield (2003) The future of the carbon cycle: Review, calcification response, ballast and feedback on atmospheric CO2, Phil. Trans. R. Soc. London, 361, 1977-1999.
Bates, N. R., A. F. Michaels, and A. H. Knap (1996), Alkalinity changes in the Sargasso Sea: Geochemical evidence of calcification?, Mar. Chem., 51, 347-358.
Beaufort, L., I. Probert, and N. Buchet (2007), Effects of acidification and primary production on coccolith weight: Implications for carbonate transfer from the surface to the deep ocean, Geochem. Geophys. Geosyst., 8, Q08011, doi:10.1029/2006GC001493.
Benson, B. B., and D. Krause (1984), The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere, Limnol. Oceanogr., 29, 620-632.
Berelson, W. M., W. M. Balch, R. Najjar, R. A. Feely, C. Sabine, and K. Lee (2007), Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: A revised global carbonate budget, Global Biogeochem. Cycles, 21, GB1024, doi:10.1029/2006GB002803. (Pubitemid 46831877)
Borges, A. V., L.-S. Schiettecatte, G. Abril, B. Delille, and F. Gazeau (2006), Carbon dioxide in European coastal waters, Estuar. Coast. Shelf S., 70(3), 375-387.
Brewer, P. G., and J. C. Goldman (1976), Alkalinity changes generated by phytoplankton growth, Limnol. Oceanogr., 21, 108-117.
Brown, C. W., and J. A. Yoder (1994), Coccolithophorid blooms in the global ocean, J. Geophys. Res., 99(C4), 7467-7482 doi:10.1029/93JC02156.
Buitenhuis, E., J. van Bleijswijk, D. Bakker, and M. Veldhuis (1996), Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea, Mar. Ecol.-Prog. Ser., 143, 271-282.
Buitenhuis, E., P. van der Wal, and H. de Baar (2001), Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide; a field and mesocosm study derived simulation, Global Biogeochem. Cycles, 15(3), 577-588, doi:10.1029/2000GB001307. (Pubitemid 32949200)
Caldeira, K., and M. E. Wickett (2003), Anthropogenic carbon and ocean pH, Nature, 425, 365.
Cao, L., K. Caldeira, and A. K. Jain (2007), Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation, Geophys. Res. Lett., 34, L05607, doi:10.1029/2006GL028605. (Pubitemid 46864519)
De Bodt, C., N. Van Oostende, J. Harlay, K. Sabbe, and L. Chou (2010), Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size, Biogeosciences, 7, 1401-1412.
de la Paz, M., X. A. Padín, A. F. Ríos, and F. F. Pérez (2010), Surface fCO2 variability in the Loire plume and adjacent shelf waters: High spatiotemporal resolution study using ships of opportunity, Mar. Chem., 118, 108-118.
Delille, B., et al. (2005), Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi, Global Biogeochem. Cycles, 19, GB2023, doi:10.1029/2004GB002318. (Pubitemid 41576422)
Dickson, A. G. (1993), pH buffers for sea water media based on the total hydrogen ion concentration scale, Deep-Sea Res. A, 40, 107-118.
Dickson, A. G., and F. J. Millero (1987), A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep- Sea Res. A, 34, 1733-1743.
Doney, S. C., V. J. Fabry, R. A. Feely, and J. A. Kleypas (2009), Ocean acidification: The other CO2 problem, Ann. Rev. Mar. Sci., 1, 169-192.
Egge, J. K., and B. R. Heimdal (1994), Blooms of Emiliania huxleyi in mesocosm experiment; effects of nutrient supply in different N:P ratios, Sarsia, 79, 333-348.
Engel, A., U. Thoms, U. Riebesell, E. Rochelle-Newall, and I. Zondervan (2004a), Polysaccharide aggregation as a potential sink of marine dissolved organic carbon, Nature, 428, 929-932.
Engel, A., B. Delille, S. Jacquet, U. Riebesell, E. Rochelle-Newall, A. Terbrggen, and I. Zondervan (2004b), Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: A mesocosm experiment. Aqua. Microb. Ecol., 34, 93-104.
Fabry, V. J., B. A. Seibel, R. A. Feely, and J. C. Orr (2008), Impacts of ocean acidification on marine fauna and ecosystem processes, J. Mar. Sc., 65, 414-432.
Fernández, E., P. W. Boyd, P. M. Holligan, and D. S. Harbour (1993), Production of organic and inorganic carbon within a large-scale coccolithophore bloom in the northeast Atlantic Ocean, Mar. Ecol.-Prog. Ser., 97, 271-285.
Fernández, E., J. J. Fritz, and W. M. Balch (1996), Chemical composition of the coccolithophorid Emiliania huxleyi under light-limited steady state growth, Journal of Experimental Biology and Ecology, 207, 149-160.
Frankignoulle, M. (1994), A complete set of buffer factors for acid/base CO2 system in seawater, J. Marine Syst., 5(2): 111-118.
Frankignoulle, M., and A. V. Borges (2001), European continental shelf as a significant sink for atmospheric carbon dioxide, Global Biogeochem. Cycles, 15(3), 569-576, doi:10.1029/2000GB001307. (Pubitemid 32949200)
Frankignoulle, M., A. Borges, and R. Biondo (2001) A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments. Wat. Res., 35, 1344-1347.
Garcia-Soto, C., E. Fernández, R. D. Pingree, and D. S. Harbour (1995), Evolution and structure of a shelf coccolithophore bloom in the Western English Channel, J. Plankton Res., 17, 2011-2036.
Gehlen, M., R. Gangst, B. Schneider, L. Bopp, O. Aumont, and C. Ethe (2007), The fate of pelagic CaCO3 production in a high CO2 ocean: A model study, Biogeosciences, 4, 505-519. (Pubitemid 47114280)
Godoi, R. H. M., K. Aerts, J. Harlay, R. Kaegi, Chul-Un Ro, L. Chou, and R. Van Grieke (2009), Organic surface coating on Coccolithophores - Emiliania huxleyi: Its determination and implication in the marine carbon cycle, Microchem. J., 91, 266-271.
Gran, G. (1952), Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid, Oceanol. Acta, 5, 209-218.
Grasshoff, K., M. Ehrhardt, and K. Kremling (1983), Methods of seawater analysis, 2nd ed., Verlag Chemie, Weinheim, Germany.
Harlay, J., C. De Bodt, A. Engel, S. Jansen, Q. dHoop, J. Piontek, N. Van Oostende, S. Groom, K. Sabbe, and L. Chou (2009), In-situ abundance and size distribution of transparent exopolymer particles (TEP) in a coccolithophorid bloom in the northern Bay of Biscay (June 2006), Deep-Sea Res. I, 56: 1251-1265.
Harlay, J., et al. (2010), Biogeochemical study of a coccolithophorid bloom in the northern Bay of Biscay (NE Atlantic Ocean) in June 2004, Prog. Oceanogr., 80, 317-336, doi:10.1016/j.pocean.2010.04.029.
Heinze, C., A. Hupe, and E. Maier-Reimer (2003), Sensitivity of the marine biospheric Si cycle for biogeochemical parameter variations, Global Biogeochem. Cycles, 17(3), 1086, doi:10.1029/2002GB001943.
Ho, D. T., C. S. Law, M. J. Smith, P. Schlosser, M. Harvey, and P. Hill (2006), Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations? Geophys. Res. Lett., 33, L16611, doi:10.1029/2006GL026817. (Pubitemid 44945736)
Hofmann, M., and H.-J. Schellnhuber (2009), Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes, Proc. Natl. Acad. Sci. USA, 106(9), 3017-3022.
Holligan, P. M., M. Viollier, D. S. Harbour, P. Camus, and M. Champagne- Philippe (1983), Satellite and ship studies of coccolithophore production along a continental shelf edge, Nature, 304, 339-342.
Holligan, P. M., et al. (1993), A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic, Global Biogeochem. Cycles, 7(4), 879-900, doi:10.1029/93GB01731.
Huthnance, J. M., H. Coelho, C. R. Griffiths, P. J. Knight, A. P. Rees, B. Sinha, A. Vangriesheim, M. White, and P. G. Chatwin (2001), Physical structures, advection and mixing in the region of Goban spur, Deep Sea Res. II, 48, 2979-3021.
Jin, X., N. Gruber, J. P. Dunne, J. L. Sarmiento, and R. A. Armstrong (2006), Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions, Global Biogeochem. Cycles, 20, GB2015, doi:10.1029/2005GB002532. (Pubitemid 44755538)
Kelly-Gerreyn, B. A., D. J. Hydes, A. M. Jegou, P. Lazure, L. J. Fernand, I. Puillat, and C. Garcia-Soto (2006), Low salinity intrusions in the western English Channel, Cont. Shelf Res., 26, 1241-1257.
Klaas, C., and D. E. Archer, (2002), Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio, Global Biogeochem. Cycles, 16(4), 1116, doi:10.1029/ 2001GB001765.
Kleypas, J. A., R. A. Feely, V. J. Fabry, C. Langdon, C. L. Sabine, and L. L. Robbins (2006), Impacts of ocean acidification on coral reefs and other marine calcifiers: A Guide for future research, report of a workshop held 18-20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the U.S. Geological Survey.
Knap, A. H., A. E. Michaels, A. Close, H. W. Ducklow, and A. G. Dickson (1996), Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. [19]. Bergen, Norway, UNESCO. JGOFS Report.
Lee, K.-S. (2001), Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon, Limnol. Oceanogr., 46, 1287-1297.
Lessard, E. J., A. Merico, and T. Tyrrell (2005), Nitrate:phosphate ratios and Emiliania huxleyi blooms, Limnol. Oceanogr., 50, 1020-1024.
Marañon, E., and N. González (1997), Primary production, calcification and macromolecular synthesis in a bloom of the coccolithophore Emiliania huxleyi in the North Sea, Mar. Ecol.-Prog. Ser., 157, 61-77.
Margalef, R. (1997), Our biosphere. Ecology Institute, Oldendorf/Luhe, Germany.
McNeil, B. I., and R. J. Matear (2007), Climate change feedbacks on future oceanic acidification, Tellus B, 59, 191-198.
Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz (1973), Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897-907.
Millero, F. J., K. Lee, and M. P. Roche (1998), Distribution of alkalinity in the surface waters of the major oceans, Mar. Chem., 60(1-2), 111-130.
Milliman, J. D., P. J. Troy, W. M. Balch, A. K. Adams, Y. H. Li, and F. T. Mackenzie (1999), Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep Sea Res. I, 46, 1653-1669.
Moore, J. K., S. C. Doney, and K. Lindsay (2004), Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model, Global Biogeochem. Cycles, 18, GB4028, doi:10.1029/2004GB002220. (Pubitemid 40440589)
Mucci, A. (1983), The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure, Am. J. Sc., 283, 781-799.
Murata, A., and T. Takizawa (2002), Impact of coccolithophorid bloom on the CO2 system in surface waters of the eastern Bering Sea shelf, Geophys. Res. Lett., 29(11), 1547, doi:10.1029/2001GL013906.
Murnane, R. J., J. L. Sarmiento, and C. Le Quéré (1999), Spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans, Global Biogeochem. Cycles, 13(2), 287-305, doi:10.1029/1998GB900009.
Nanninga, H. J., and T. Tyrrell (1996), Importance of light for the formation of algal blooms by Emiliania huxleyi, Mar. Ecol.-Prog. Ser., 136, 195-203.
Orr, J. C., et al. (2005), Anthropogenic ocean acidification over the twentyfirst century and its impact on calcifying organisms, Nature, 437, 681-686.
Paasche, E. (2002), A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions, Phycology, 40, 503-529.
Paasche, E., and S. Brubak (1994), Enhanced calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation, Phycologia, 33(5), 324-330.
Padin, X. A., G. Navarro, M. Gilcoto, A. F. Rios, F. F. Pérez (2009), Estimation of air-sea CO2 fluxes in the Bay of Biscay based on empirical relationships and remotely sensed observations, J. Marine Syst., 75, 280-289.
Palenik, B., and S. E. Henson (1997), The use of amides and other organic nitrogen sources by the phytoplankton Emiliania huxleyi, Limnol. Oceanogr., 42, 1544-1551.
Pingree, R. D. (1993), Flow of surface waters to the west of the British Isles and in the Bay of Biscay, Deep-Sea Res. II, 40, 369-388.
Pingree, R. D., and B. Le Cann (1989) Celtic and Armorican shelf and slope residual currents, Prog. Oceanogr., 23, 303-338.
Pingree, R. D., and A. L. New (1995), Structure, seasonal development and sunglint spatial coherence of the internal tide on the Celtic and Armorican shelves and in the Bay of Biscay, Deep-Sea Res. I, 42(2), 245-284.
Pingree, R. D., B. Sinha, and C. R. Griffiths (1999), Seasonality of the European slope current (Goban Spur) and ocean margin exchange, Cont. Shelf Res., 19, 929-975.
Raven, J., K. Caldeira, H. Elderfield, O. Hoegh-Guldberg, P. Liss, U. Riebesell, J. Shepherd, C. Turley, and A. Watson (2005), Ocean acidification due to increasing atmospheric carbon dioxide, The Royal Society, London, UK.
Rees, A. P., E. M. Woodward, C. Robinson, D. G. Cummings, G. A. Tarran, and I. Joint (2002), Size-fractionated nitrogen uptake and carbon fixation during a developing coccolithophore bloom in the North Sea during June 1999, Deep Sea Res. II, 49, 2905-2927.
Ridgwell, A., I. Zondervan, J. C. Hargreaves, J. Bijma, and T. M. Lenton (2007), Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback, Biogeosciences, 4, 481-492.
Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. Zeebe, and F. M. M. Morel (2000), Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature, 407, 364-367.
Riebesell, U., et al. (2007), Enhanced biological carbon consumption in a high CO2 Ocean, Nature, 450, 545-548.
Riegman, R., W. Stolte, A. A. M. Noordeloos, and D. Slezak (2000), Nutrient uptake and alkaline phosphatase (EC 3:1:3:1) activity of Emiliania huxleyi (prymnesiophyceae) during growth under N and P limitation in continuous cultures, J. Phycol., 36, 87-96.
Robertson, J. E., C. Robinson, D. R. Turner, P. Holligan, A. J. Watson, P. Boyd, E. Fernandez, and M. Finch (1994), The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991, Deep Sea Res. I, 41(2), 297-341.
Sabine, C. L., et al. (2004), The oceanic sink for anthropogenic CO 2, Science, 305, 367-371.
Smith, S. V., and G. S. Key (1975), Carbon dioxide and metabolism in marine environments, Limnol. Oceanogr., 20, 493-495.
Takahashi, T., J. Olafsson, J. Goddard, D. W. Chipman, and S. C. Sutherland (1993), Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study, Global Biogeochem. Cycles, 7(4), 843-878, doi:10.1029/93GB02263.
Toggweiller, J. (1993), Carbon overconsumption, Nature, 363, 210-211.
van der Wal, P., R. S. Kempers, and M. J. W. Veldhuis (1995), Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi, Mar. Ecol.-Prog. Ser., 126, 247-265.
Weiss, R. F. (1974), Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 2, 203-215.
Weiss, R. F., and B. A. Price (1980), Nitrous oxide solubility in water and seawater, Mar. Chem., 8, 347-359.
Wollast, R., and L. Chou (1998), Distribution and fluxes of calcium carbonate along the continental margin in the Gulf of Biscay, Aquat. Geochem., 4, 369-393.
Wollast, R., and L. Chou (2001), The carbon cycle at the ocean margin in the northern Bay of Biscay, Deep Sea Res. II, 48(14-15), 3265-3293.
Yamanaka, Y., and E. Tajika (1996), The role of the vertical fluxes of particulate organic matter and calcite in the ocean carbon cycle: Studies using an ocean biogeochemical model, Global Biogeochem. Cycles, 10(2), 361-382, doi:10.1029/96GB00634. (Pubitemid 26406729)