[en] We study numerically multifractal properties of two models of one-dimensional quantum maps: a map with pseudointegrable dynamics and intermediate spectral statistics and a map with an Anderson-like transition recently implemented with cold atoms. Using extensive numerical simulations, we compute the multifractal exponents of quantum wave functions and study their properties, with the help of two different numerical methods used for classical multifractal systems (box-counting and wavelet methods). We compare the results of the two methods over a wide range of values. We show that the wave functions of the Anderson map display a multifractal behavior similar to eigenfunctions of the three-dimensional Anderson transition but of a weaker type. Wave functions of the intermediate map share some common properties with eigenfunctions at the Anderson transition (two sets of multifractal exponents, with similar asymptotic behavior), but other properties are markedly different (large linear regime for multifractal exponents even for strong multifractality, different distributions of moments of wave functions, and absence of symmetry of the exponents). Our results thus indicate that the intermediate map presents original properties, different from certain characteristics of the Anderson transition derived from the nonlinear sigma model. We also discuss the importance of finite-size effects.
Disciplines :
Physics
Author, co-author :
Martin, John ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et Physique des atomes froids
Garcia-Mata, Ignacio
Giraud, Olivier
Georgeot, Bertrand
Language :
English
Title :
Multifractal wave functions of simple quantum maps
Publication date :
2010
Journal title :
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
ISSN :
1539-3755
eISSN :
1550-2376
Publisher :
American Physical Society, College Park, United States - Maryland
C. Meneveau and K. R. Sreenivasan, Phys. Rev. Lett. 59, 1424 (1987) 10.1103/PhysRevLett.59.1424
J.-F. Muzy, E. Bacry, and A. Arneodo, Phys. Rev. Lett. 67, 3515 (1991). 10.1103/PhysRevLett.67.3515
B. B. Mandelbrot, A. J. Fisher, and L. E. Calvet, Cowles Foundation Discussion, 1997 (unpublished), Paper No. 1164.
S. Lovejoy and D. Schertzer, J. Geophys. Res. 95, 2021 (1990). 10.1029/JD095iD03p02021
A. D. Mirlin, Phys. Rep. 326, 259 (2000). 10.1016/S0370-1573(99)00091-5
E. Cuevas, M. Ortuno, V. Gasparian, and A. Perez-Garrido, Phys. Rev. Lett. 88, 016401 (2001). 10.1103/PhysRevLett.88.016401
F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008). 10.1103/RevModPhys.80.1355
B. Huckestein, Rev. Mod. Phys. 67, 357 (1995). 10.1103/RevModPhys.67.357
A. D. Mirlin, Y. V. Fyodorov, F.-M. Dittes, J. Quezada, and T. H. Seligman, Phys. Rev. E 54, 3221 (1996). 10.1103/PhysRevE.54.3221
V. E. Kravtsov and K. A. Muttalib, Phys. Rev. Lett. 79, 1913 (1997). 10.1103/PhysRevLett.79.1913
Y. V. Fyodorov, A. Ossipov, and A. Rodriguez, J. Stat. Mech.: Theory Exp. 2009, L12001. 10.1088/1742-5468/2009/12/L12001
A. M. García-García and J. Wang, Phys. Rev. E 73, 036210 (2006). 10.1103/PhysRevE.73.036210
E. B. Bogomolny, U. Gerland, and C. Schmit, Phys. Rev. E 59, R1315 (1999). 10.1103/PhysRevE.59.R1315
E. B. Bogomolny, O. Giraud, and C. Schmit, Phys. Rev. E 65, 056214 (2002). 10.1103/PhysRevE.65.056214
O. Giraud, J. Marklof, and S. O'Keefe, J. Phys. A 37, L303 (2004). 10.1088/0305-4470/37/28/L01
E. B. Bogomolny and C. Schmit, Phys. Rev. Lett. 93, 254102 (2004). 10.1103/PhysRevLett.93.254102
J. Martin, O. Giraud, and B. Georgeot, Phys. Rev. E 77, 035201 (R) (2008). 10.1103/PhysRevE.77.035201
J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser, and J.-C. Garreau, Phys. Rev. Lett. 101, 255702 (2008) 10.1103/PhysRevLett.101.255702
G. Lemarié, J. Chabé, P. Szriftgiser, J.-C. Garreau, B. Grémaud, and D. Delande, Phys. Rev. A 80, 043626 (2009). 10.1103/PhysRevA.80.043626
G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J.-C. Garreau, Phys. Rev. Lett. 105, 090601 (2010). 10.1103/PhysRevLett.105.090601
G. Casati, I. Guarneri, and D. L. Shepelyansky, Phys. Rev. Lett. 62, 345 (1989). 10.1103/PhysRevLett.62.345
A. D. Mirlin and F. Evers, Phys. Rev. B 62, 7920 (2000). 10.1103/PhysRevB.62.7920
M. S. Foster, S. Ryu, and A. W. W. Ludwig, Phys. Rev. B 80, 075101 (2009). 10.1103/PhysRevB.80.075101
C. Monthus and T. Garel, J. Stat. Mech.: Theory Exp. 2010, P06014. 10.1088/1742-5468/2010/06/P06014
F. Evers and A. D. Mirlin, Phys. Rev. Lett. 84, 3690 (2000). 10.1103/PhysRevLett.84.3690
Y. V. Fyodorov, J. Stat. Mech.: Theory Exp. 2009, P07022. 10.1088/1742-5468/2009/07/P07022
A. D. Mirlin, Y. V. Fyodorov, A. Mildenberger, and F. Evers, Phys. Rev. Lett. 97, 046803 (2006). 10.1103/PhysRevLett.97.046803
B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides, and H. B. Shore, Phys. Rev. B 47, 11487 (1993) 10.1103/PhysRevB.47.11487
D. Braun, G. Montambaux, and M. Pascaud, Phys. Rev. Lett. 81, 1062 (1998). 10.1103/PhysRevLett.81.1062
L. J. Vasquez, A. Rodriguez, and R. A. Römer, Phys. Rev. B 78, 195106 (2008) 10.1103/PhysRevB.78.195106
A. Rodriguez, L. J. Vasquez, and R. A. Römer, Phys. Rev. B 78, 195107 (2008). 10.1103/PhysRevB.78.195107
A. Arneodo, in Wavelets: Theory and Applications, edited by, G. Erlebacher,,, M. Y. Hussaini,, and, L. M. Jameson, (Oxford University Press, New York, 1996).
S. G. Mallat, IEEE Trans. Pattern Anal. Mach. Intell. 11, 674 (1989). 10.1109/34.192463
I. Daubechies, Commun. Pure Appl. Math. 41, 909 (1988). 10.1002/cpa.3160410705
I. García-Mata, O. Giraud, and B. Georgeot, Phys. Rev. A 79, 052321 (2009). 10.1103/PhysRevA.79.052321
O. Giraud and B. Georgeot, Phys. Rev. A 72, 042312 (2005). 10.1103/PhysRevA.72.042312
T. Brandes, B. Huckestein, and L. Schweitzer, Ann. Phys. 5, 633 (1996).
B. Huckestein and R. Klesse, Philos. Mag. B 77, 1181 (1998) 10.1080/13642819808205008
B. Huckestein and R. Klesse, Phys. Rev. B 59, 9714 (1999). 10.1103/PhysRevB.59.9714