[en] The ecotropic viral integration site 1 (Evi1) and related MEL1 (MDS1/Evi1-like gene 1) genes are zinc finger oncogenic transcription factors involved in myeloid leukaemia. Here, we show that in Xenopus, Evi1 and MEL1 have partially overlapping restricted embryonic expression profiles. Within the pronephros, Evi1 and MEL1 are sequentially expressed within the distal tubule and duct compartments, Evi1 transcription being detected prior to any sign of pronephric morphogenesis. In the pronephros of zebrafish embryos, Evi1 expression is restricted to the posterior portion of the duct, the anterior portion having characteristics of proximal tubules. In the Xenopus pronephros, Evi1 expression is upregulated by retinoid signaling and repressed by overexpression of xWT1 and by Notch signaling. Overexpression of Evi1 from late neurula stage specifically inhibits the expression of proximal tubule and glomus pronephric markers. We show that the first zinc finger and CtBP interaction domains are required for this activity. Overexpression of a hormone-inducible Evi1-VP16 antimorphic fusion with activation at neurula stage disrupts distal tubule and duct formation and expands the expression of glomus markers. Although overexpression of this construct also causes in many embryos a reduction of proximal tubule markers, embryos with expanded and ectopic staining have been also observed. Together, these data indicate that Evi1 plays a role in the proximo-distal patterning of the pronephros and suggest that it may do so by functioning as a CtBP dependent repressor.
Research Center/Unit :
Giga-Development and Stem Cells - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Van Campenhout, Claude; Université Libre de Bruxelles - ULB > Institut de Biologie et de Médecine Moléculaires > Laboratoire d'Embryologie Moléculaire
Nichane, Massimo; Université Libre de Bruxelles - ULB > Institut de Biologie et de Médecine Moléculaires > Laboratoire d'Embryologie Moléculaire
Antoniou, Aline; Université Libre de Bruxelles - ULB > Institut de Biologie et de Médecine Moléculaires > Laboratoire d'Embryologie Moléculaire
Pendeville, Helene; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Bronchain, Odile J; Université Paris-Sud 11 > CNRS UMR 8080, IBAIC, > Transgenèse et Génétique des Amphibiens
Marine, Jean-Christophe; University of Ghent > Flanders Interuniversity Institute for Biotechnology > Laboratory for Molecular Cancer Biology
Mazabraud, Andre; Université Paris-Sud 11 > CNRS UMR 8080, IBAIC > Transgenèse et Génétique des Amphibiens
Voz, Marianne ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Bellefroid, Eric J.; Université Libre de Bruxelles - ULB > Institut de Biologie et de Médecine Moléculaires > Laboratoire d'Embryologie Moléculaire
Language :
English
Title :
Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation.
Allison T., Ko T.C., Cao Y., Liang Y.-Y., Feng X.-H., Chang C., and Derynck R. Repression of BMP and activin-inducible transcription by EVI-1. J. Biol. Chem. 280 (2005) 24227-24237
Aytekin M., Vinatzer U., Musteanu M., Raynaud S., and Wieser R. Regulation of the expression of the oncogene EVI1 through the use of alternative mRNA 5′-ends. Genes 356 (2005) 160-168
Bellefroid E.J., Bourguignon C., Holleman T., Ma Q., Anderson D.J., Kintner C., and Pieler T. X-MyT1, a Xenopus C2HC type zinc finger protein with a regulatory function in neuronal differentiation. Cell 87 (1996) 1191-1202
Bellefroid E.J., Kobbe A., Gruss P., Pieler T., Gurdon J.B., and Papalopulu N. Xiro3 encodes a Xenopus homolog of the Drosophila Iroquois genes and functions in neural specification. EMBO J. 17 (1998) 191-203
Blumberg B., Bolado J., Moreno T.A., Kintner C., Evans R.M., and Papalopulu N. An essential role for retinoid signaling in anteroposterior neural patterning. Development 124 (1997) 373-379
Bradley L.C., Snape A., Bhatt S., and Wikinson D.G. The structure and expression of the Xenopus Krox-20 gene: conserved and divergent patterns of expression in rhombomeres and neural crest. Mech. Dev. 40 (1993) 73-84
Brändli A.W. Towards a molecular anatomy of the Xenopus pronephric kidney. Int. J. Dev. Biol. 43 (1999) 381-395
Broadbent J., and Read E.M. Wholemount in situ hybridization of Xenopus and zebrafish embryos. Methods Mol. Biol. 127 (1999) 57-67
Buonamici S., Li D., Chi Y., Zhao R., Wang X., Brace L., Ni H., Saunthararajah Y., and Nucifora G. Evi1 induces myelodysplastic syndrome in mice. J. Clin. Invest. 114 (2004) 713-719
Carroll T., and Vize P.D. Wilm's tumor suppressor gene is involved in the development of disparate kidney forms: evidence from expression in the Xenopus pronephros. Dev. Dyn. 206 (1996) 131-138
Carroll T., and Vize P.D. Synergism between Pax8 and lim-1 in embryonic kidney development. Dev. Biol. 214 (1999) 46-59
Chan T.-C., Takahashi S., and Asashima M. A role for Xlim1 in pronephros development in Xenopus laevis. Dev. Biol. 228 (2000) 256-269
Chen Y., Pollet N., Niehrs C., and Pieler T. Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos. Mech. Dev. 101 (2001) 91-103
Cheng H.T., and Kopan R. The role of Notch signaling in specification of podocyte and proximal tubules within the developing mouse kidney. Kidney Int. 68 (2005) 1951-1952
Cheng H.T., Miner J.H., Lin M., Tansey M.G., Roth K., and Kopan R. γ-Secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development 130 (2003) 5031-5042
Chitnis A., Henrique D., Lewis J., Ish-Horowicz D., and Kintner C. Primary neurogenesis in Xenopus embryos is regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375 (1995) 761-766
Coffman C.R., Skoglund P., Harris W.A., and Kintner C.R. Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73 (1993) 659-671
Deconinck A.E., Mead P.E., Tevosian S.G., Crispino J.D., Katz S.G., Zon L.I., and Orkin S.H. FOG acts as a repressor of red blood cell development in Xenopus. Development 127 (2000) 2031-2040
Delwel R., Funabiki T., Kreider B.L., Morishita K., and Ihle J.N. Four of the seven zinc fingers of Evi-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T)AAGA(T/C)AAGATAA. Mol. Cell. Biol. 13 (1993) 4291-4300
Drummond I.A. Making a zebrafish kidney: a tale of two tubes. Trends Cell Biol. 13 (2003) 357-365
Drummond I.A. Kidney development and disease in the zebrafish. J. Am. Soc. Nephrol. 16 (2005) 299-304
Fichelson S., Dreyfus F., Berger R., Melle J., Bastard C., Miclea J.M., and Gisselbrecht S. Evi-1 expression in leukemic patients with rearrangements of the 3q25-q28 chromosomal region. Leukemia 6 (1992) 93-99
Gammill L.S., and Sive H. Identification of otx2 target genes and restrictions in ectodermal competence during Xenopus cement gland formation. Development 124 (1997) 471-481
Gerth V.E., Zhou X., and Vize P.D. Nephrin expression and three-dimensional morphogenesis of the Xenopus pronephric glomus. Dev. Dyn. 233 (2005) 1131-1139
Grieshammer U., Cebrian C., Ilagan R., Meyers E., Herzlinger D., and Martin G.R. FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132 (2005) 3847-3857
Hamburger V., and Hamilton L. Series of embryonic chicken growth. J. Morphol. 88 (1951) 49-92
Harland R.M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36 (1991) 685-695
Hemmati-Brivanlou A., de la Torre J.R., Holt C., and Harland R.M. Cephalic expression and molecular characterization of Xenopus En-2. Development 111 (1991) 715-724
Hernandez R., Rikhof H., Bachmann R., and Moens C. vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish. Development 131 (2004) 4511-4520
Hirai H. The transcription factor Evi-1. Int. J. Biochem. Cell Biol. 31 (1999) 1367-1371
Hollemann T., Chen Y., Grunz H., and Pieler T. Regionalized metabolic activity establishes boundaries of retinoic acid signalling. EMBO J. 17 (1998) 7361-7372
Hoyt P.R., Bartholomew C., Davis A.J., Yutzey K., Gamer L.W., Potter S.S., Ihle J.N., and Mucenski M.L. The Evi-1 proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mech. Dev. 65 (1997) 55-70
Hsu D.R., Economides A.N., Wang X., Eimon P.M., and Harland R.M. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell 1 (1998) 673-683
James R.G., and Schultheiss T.M. Patterning of the avian intermediate mesoderm by lateral plate and axial tissues. Dev. Biol. 253 (2003) 109-124
James R.G., and Schultheiss T.M. BMP signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev. Biol. 288 (2005) 113-125
Jones E.A. Xenopus: a prince among models for pronephric kidney development. J. Am. Soc. Nephrol. 16 (2005) 313-321
Karniski L.P., Lotscher M., Fucentese M., Hilfiker H., Biber J., and Murer H. Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am. J. Physiol. 275 (1998) 79-87
Kazama H., Kodera T., Shimizu S., Mizoguchi H., and Morishita K. Ecotropic viral integration site-1 is activated during, and is sufficient for, neuroectodermal P19 cell differentiation. Cell Growth Differ. 10 (1999) 565-573
Kocher O., Pal R., Roberts M., Cirovic C., and Gilchrist A. Targeted disruption of the PDZK1 gene by homologous recombination. Mol. Cell. Biol. 23 (2003) 1175-1180
Krieg P.A. Synthesis of RNA probes using SP6, T7 and T3 RNA polymerase. Methods Gene Tech. 1 (1991) 35-62
Kurokawa M., Mitani K., Irie K., Matsuyama T., Takahashi T., Chiba S., Yazaki Y., Matsumoto K., and Hirai H. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 394 (1998) 92-96
Maden M. Heads or tails? Retinoic acid will decide. Bioessays 21 (1999) 809-812
Majumdar A., Lun K., Brand M., and Drummond I.A. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 127 (2000) 2089-2098
Marcos-Gutiérrez C., Wilson S.W., Holder N., and Pachnis V. The zebrafish homologue of the ret receptor and its pattern of expression during embryogenesis. Oncogene 14 (1997) 879-889
Mauch T.J., Yang G., Wright M., Smith D., and Schoenwolf G.C. Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm. Dev. Biol. 220 (2000) 62-75
Mavropoulos A., Devos N., Biemar F., Zecchin E., Argenton F., Edlund H., Motte P., Martial J.A., and Peers B. sox4b is a key player of pancreatic alpha cell differentiation in zebrafish. Dev. Biol. 285 (2005) 211-223
Mayor R., Morgan R., and Sargent M.G. Induction of the prospective neural crest of Xenopus. Development 121 (1995) 767-777
McLaughin K.A., Rones M.S., and Mercola M. Notch regulates cell fate in the developing pronephros. Dev. Biol. 227 (2000) 567-580
Mochizuki N., Shimizu S., Nagasawa T., Tanaka H., Tanikawi M., Yokota J., and Morishita K. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood 96 (2000) 3209-3214
Morishita K., Parker D.S., Mucenski M.L., Jenkins N.A., Copeland N.G., and Ihle J.N. Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 54 (1988) 831-840
Morishita K., Parganas E., Parham D.M., Matsugi T., and Ihle J.N. The Evi-1 zinc finger myeloid transforming gene is normally expressed in the kidney and in developing oocytes. Oncogene 5 (1990) 1419-1423
Morishita K., Suzukawa K., Taki T., Ihle J.N., and Yokota J. Evi-1 zinc finger protein works as a transcriptional activator via binding to a consensus sequence GACAAGATAAGATAAN 1-28 CTCATCTTC. Oncogene 10 (1995) 1961-1967
Mucenski M.L., Taylor B.A., Ihle J.N., Hartley J.W., Morse III H.C., Jenkins N.A., and Copeland N.G. Identification of a common ecotropic viral integration site, Evi-1, in the ADN of AKXD murine myeloid tumors. Mol. Cell. Biol. 8 (1988) 301-308
Nakai S., Sugitani Y., Sato H., Ito S., Miura Y., Ogawa M., Nishi M., Jishage K.-I., Minowa O., and Noda T. Crucial roles of Brn1 in distal tubule formation and function in mouse kidney. Development 130 (2003) 4751-4759
Nieto M.A., Bradley L.C., and Wilkinson D.G. Conserved segmental expression of Krox-20 in the vertebrate hindbrain and its relationship to lineage restriction. Development Suppl. 2 (1991) 59-62
Nieuwkoop P.D., and Faber J. A Normal Table of Xenopus laevis (Daudin) (1997), North Holland Publishing Co, Amsterdam, The Netherlands
Nishikata I., Sasaki H., Tateno Y., Imayoshi S., Asou N., Nakamura T., and Morishita K. A novel EVI1 gene family, MEL1, lacking a PR domain (MEL1S) is expressed mainly in t(1;3)(p36;q21)-positive AML and blocks G-CSF-induced myeloid differentiation. Blood 102 (2003) 3323-3332
Obara-Ishihara T., Kuhlman T., Niswander L., and Herzlinger D. The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. Development 126 (1999) 1103-1108
Osafune K., Nishinakamura R., Komazaki S., and Asashima M. In vitro induction of the pronephric duct in Xenopus explants. Dev. Growth Differ. 44 (2002) 161-167
Palmer S., Brouillet J.-P., Kilbey A., Fulton R., Walker M., Crossley M., and Bartholomew C. Evi-1 transforming and repressor activities are mediated by CtBP co-repressor proteins. J. Biol. Chem. 276 (2001) 25834-25840
Perkins A.S., Mercer J.A., Jenkins N.A., and Copeland N.G. Patterns of Evi-1 expression in embryonic and adult tissues suggest that Evi-1 plays an important regulatory role in mouse development. Development 111 (1991) 479-487
Ruiz i Altaba A., and Jessell T. Retinoic acid modifies mesodermal patterning in early Xenopus embryos. Genes Dev. 5 (1991) 175-187
Ryan K., Butler K., Bellefroid E., and Gurdon J.B. Xenopus eomesodermin is expressed in neural differentiation. Mech. Dev. 75 (1998) 155-158
Ryffel G.U. What can a frog tell us about kidney development. Nephron. Exp. Nephrol. 94 (2003) 35-43
Sasai Y., Lu B., Steinbeisser H., Geissert D., Gont L.K., and De Robertis E.M. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79 (1994) 779-790
Sato A., Asashima M., Yokota T., and Nishinakamura R. Cloning and expression pattern of a Xenopus pronephros-specific gene, XSMP-30. Mech. of Dev. 92 (2000) 273-275
Serluca F.C., and Fishman M.C. Pre-pattern in the pronephric kidney field of zebrafish. Development 128 (2001) 2233-2241
Seufert D.W., Brennan H.C., DeGuire J., Jones E.A., and Vize P.D. Developmental basis of pronephric defects in xenopus body plan phenotypes. Dev. Biol. 215 (1999) 233-242
Smith J.C., Price B.M., Green J.B., Weigel D., and Herrmann B.G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67 (1991) 79-87
Smith A., Robinson V., Patel K., and Wilkinson D.G. The EphA4 and EphB1 receptor tyrosine kinase and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 7 (1997) 561-570
Taira M., Otani H., Saint-Jeannet J., and Dawid I. Role of the LIM class homeodomain protein Xlim-1 in neural and muscle induction by the Spemann organizer in Xenopus. Nature 372 (1994) 677-679
Turner D.L., and Weintraub H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8 (1994) 1434-1447
Vize P.D. The chloride conductance channel ClC-K is a specific marker for the Xenopus pronephric distal tubule and duct. Gene Expression Patterns 3 (2003) 347-350
Vize P.D., Seufert D.W., Carroll T.J., and Wallingford J.B. Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev. Biol. 188 (1997) 189-204
Vize P.D., Woolf A.S., and Bard J.B.L. The Kidney. From Normal Development to Congenital Disease (2003), Academic Press, Amsterdam
Wallingford J.B., Carroll T.J., and Vize P.D. Precocious expression of the Wilm's tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis. Dev. Biol. 202 (1998) 103-112
Wang P., Pereira F.A., Beasley D., and Zheng H. Preselinins are required for the formation of comma- and S-shaped bodies during nephrogenesis. Development 130 (2003) 5019-5029
Wettstein D.A., Turner D.L., and Kintner C. The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 124 (1997) 693-702
Wilkinson D.G., and Nieto M.A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225 (1993) 361-373
Yuasa H., Oike Y., Iwama A., Nishikata I., Sugiyama D., Perkins A., Mucenski M.L., Suda T., and Morishita K. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J. 24 (2005) 1976-1987
Zhou X., and Vize P.D. Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules. Dev. Biol. 271 (2004) 322-338
Zon L., Mather C., Burgess S., Bolce M., Harland R., and Orkin S. Expression of GATA-binding proteins during embryonic development in Xenopus laevis. Proc. Natl. Acad. Sci. U. S. A. 88 (1991) 10642-10646