[en] The ability of DRG-derived neurons to survive and attach onto macroporous polylactide (PLA) foams was assessed in vitro. The foams were fabricated using a thermally induced polymer-solvent phase separation. Two types of pore structures, namely oriented or interconnected pores, can be produced, depending on the mechanism of phase separation, which in turn can be predicted by the thermodynamics of the polymer-solvent pair. Coating of the porous foams with polyvinylalcohol (PVA) considerably improved the wettability of the foams and allowed for cell culture. The in vitro biocompatibility of the PVA-coated supports was demonstrated by measuring cell viability and neuritogenesis. Microscopic observations of the cells seeded onto the polymer foams showed that the interconnected pore networks were more favorable to cell attachment than the anisotropic ones. The capacity of highly oriented foams to support in vivo peripheral nerve regeneration was studied in rats. A sciatic nerve gap of 5-mm length was bridged with a polymer implant showing macrotubes of 100 microm diameter. At 4 weeks postoperatively, the polymer implant was still present. It was well integrated and had restored an anatomic continuity. An abundant cell migration was observed at the outer surface of the polymer implant, but not within the macrotubes. This dense cellular microenvironment was found to be favorable for axogenesis.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Surgery
Author, co-author :
Maquet, Véronique; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Martin, Didier ; Université de Liège - ULiège > Département des sciences cliniques > Neurochirurgie
Malgrange, Brigitte ; Université de Liège - ULiège > CNCM/ Centre fac. de rech. en neurobiologie cell. et moléc.
Franzen, Rachelle ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Neuro-anatomie
Schoenen, Jean ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Neuro-anatomie
Moonen, Gustave ; Université de Liège - ULiège > Département des sciences cliniques > Neurologie - Doyen de la Faculté de Médecine
Jérôme, Robert ; Université de Liège - ULiège > Centre d'études et de rech. sur les macromolécules (CERM)
Language :
English
Title :
Peripheral Nerve Regeneration Using Bioresorbable Macroporous Polylactide Scaffolds
Publication date :
15 December 2000
Journal title :
Journal of Biomedical Materials Research. Part A
ISSN :
1549-3296
eISSN :
1552-4965
Publisher :
John Wiley & Sons, Inc
Volume :
52
Issue :
4
Pages :
639-51
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Fu S.Y., Gordon T. (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14:67-116.
Millesi H. (1991) Indications and techniques of nerve grafting., Gelbertzman RH, editor. Operative nerve repair and reconstruction. Philadelphia: Lippincott JB; 525-544.
Dellon A.L., MacKinnon S.E. (1988) An alternative to the classical nerve graft for the management of the short nerve gap. Plast Reconstr Surg 82:849-856.
Krarup C., Upton J., Creager M.A. (1990) Nerve regeneration and reinnervation after limb amputation and replantation: Clinical and physiological findings. Muscle Nerve 13:291-304.
Lundborg G. (1987) Nerve regeneration and repair. Acta Orthop Scand 58:87-137.
Fields R.D., Le Beau J.M., Longo F.M., Ellisman M.H. (1989) Nerve regeneration through artificial tubular implants. Prog Neurobiol 33:87-134.
Den Dunnen W.F.A., Stokroos I., Blaauw E.H., Holwerda A., Pennings A.J., Robinson P.J., Schakenraad J.M. (1996) Light-microscopic and electron-microscopic evaluation of short-term nerve regeneration using a biodegradable poly(DL-lactide-ε-caprolactone) nerve guide. J Biomed Mater Res 31:105-115.
Den Dunnen W.F.A., Van der Lei B., Robinson P.H., Holwerda A., Pennings A.J., Schakenraad J.M. (1995) Biological performance of a degradable poly(lactic-acid-ε-caprolactone) nerve guide: Influence of tube dimensions. J Biomed Mater Res 29:757-766.
Aebisher P., Guenard V., Valentini R.F. (1990) The morphology of regenerating peripheral nerves is modulated by the surface microgeometry of polymeric guidance channels. Brain Res 531:211-218.
Aebisher P., Guenard V., Winn S.R., Valentini R.F., Galletti P.M. (1988) Blind-ended semipermeable guidance channels support peripheral nerve regeneration in the absence of a distal nerve stump. Brain Res 454:179-187.
Di Benedetto G., Zura G., Mazzucchelli R., Santinelli A., Scarpelli M., Berlani A. (1998) Nerve regeneration through a combined autologous conduit (vein plus acellular muscle grafts). Biomater 19:173-181.
Terada N., Bjursten L.M., Papaloizos M., Lundborg G. (1997) Resorbable filament structures as a scaffold for matrix formation and axonal growth in bioartificial nerve grafts: Long term observations. Restor Neurol Neurosci 11:65-69.
Zhao Q., Dahlin L.B., Kanje M., Lundborg G. (1992) The formation of a pseudo-nerve in silicone chambers in the absence of regenerating axons. Brain Res 592:106-114.
Dubey N., Letourneau P.C., Tranquillo R.T. (1997) Enhanced neurite and Schwann cell invasion into magnetically aligned collagen gel rods for peripheral nerve entubuluation repair., Peppas NA, editor. Biomaterials, carriers for drug delivery, and scaffolds for tissue engineering. Los Angeles, California; 111-113.
Schugens C., Maquet V., Grandfils C., Jerome R., Teyssie Ph. (1996) Biodegradable and macroporous polylactide implants for cell transplantation: 1. Preparation of macroporous polylactide supports by solid-liquid phase separation. Polymer 37:1027-1038.
Schugens C., Maquet V., Grandfils C., Jerome R. (1996) Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation. J Biomed Mater Res 30:449-461.
Schoenen J., Delree P., Leprince P., Moonen G. (1989) Neurotransmitter phenotype in cultured dissociated adult rat dorsal root ganglia: An immunocytochemical study. J Neurosci Res 22:473-487.
Martin D., Robe P., Franzen R., Delree P., Schoenen J., Stevenaert A., Moonen C.T. (1996) Effects of Schwann cell transplantation in a contusion model of rat spinal cord injury. J Neurosci Res 45:588-597.
Da Silva C.F., Madison R., Dikkes P., Chiu T.-H., Sidman R.L. (1985) An in vivo model to quantify motor and sensory peripheral nerve regeneration using bioresorbable nerve guides tubes. Brain Res 342:307-315.
Nyilas E., Chiu T.-H., Sidman R.L., Henry E.W., Brushart T.M., Dikkes P., Madison R. (1983) Peripheral nerve repair with bioresorbable prosthesis. Trans Am Soc Artif Intern Organs 29:307-312.
Seckel B.R., Chiu T.-H., Nyilas E., Sidman R.L. (1983) Nerve regeneration through synthetic biodegradable nerve guides: Regulation by the target organ. Plast Reconstr Surg 74:173-181.
Kiyotani T., Teramachi M., Takimoto Y., Nakamura T., Shimizu Y., Enolo K. (1996) Nerve regeneration across a 25-mm gap bridged by a polyglicolic acid-collagen tube: A histological and electrophysiological evaluation of regenerated nerves. Brain Res 740:66-74.
Hoppen H.J., Leenslag J.W., Pennings A.J. (1990) Two-ply biodegradable nerve guide: Basic aspects of design, construction and biological performance. Biomater 11:286-290.
Langone F., Lora S., Veronese F.M., Caliceti P., Parnigolto P.P., Valenti F., Palma G. (1995) Peripheral nerve repair using a poly(organo)phosphazene tubular prosthesis. Biomater 16:347-353.
Maquet V., Jerome R. (1997) Design of macroporous biodegradable polymer scaffold for cell transplantation., Liu D-M and Dixit V, editors. Porous materials for tissue engineering. Uetikon-Zuerich: Trans Tech; 15-42.
Attawia M., Devin J., Laurencin C. (1995) Immunofluorescence and confocal laser scanning microscopy studies of osteoblast growth and phenotypic expression in three-dimensional degradable synthetic matrices. J Biomed Mater Res 29:843-848.
Evans G.R.D., Brandt K., Widmer M.S., Lu L. (1999) In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomater 20:1109-1115.
Lundborg G., Dahlin L., Danielsen N., Gelberman R., Longo F.M., Powell H.C., Varon S. (1982) Nerve regeneration in silicon chambers: Influence of the gap length and of distal stump components. Exp Neurol 76:361-375.
Butti M., Verdu E., Labrador R., Vilches J. (1996) Influence of physical parameters of nerve chambers on peripheral nerve regeneration and reinnervation. Exp Neurol 137:26-33.
Zhao Q., Droot J., Laurell T., Wallman L., Lindstrom K., Bjursten L.M., Lundborg G., Montelius M., Danielsen N. (1997) Rat sciatic nerve regeneration through a micromachined silicon chip. Biomater 18:75-80.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.