[en] Io's motion relative to the Jovian magnetic field generates a power of about 10^12 W, which is thought to propagate as an Alfven wave along the magnetic field line. This power is transmitted to the electrons, which will then precipitate and generate the observed auroral phenomena from UV to radio wavelengths. A more detailed look at this hypothesis shows some difficulties: Can the Alfven waves escape the torus or are they trapped inside? Where and how are the particles accelerated? In which direction? Is there enough power transmitted to the particles to explain the strong brightness of the auroral emissions in UV, IR, visible, and radio? In other words, can we make a global, consistent model of the Io-Jupiter interaction that matches all the observations? To answer these questions, we review the models and studies that have been proposed so far. We show that the Alfven waves need to be filamented by a turbulent cascade process and accelerate the electrons at high latitude in order to explain the observations and to form a consistent scheme of the Io-Jupiter interaction.
Disciplines :
Space science, astronomy & astrophysics Earth sciences & physical geography
Author, co-author :
Hess, Sebastien L G; University of Colorado at Boulder - CU > Laboratory for Atmospheric and Space Physics
Delamere, Peter; University of Colorado at Boulder - CU > Laboratory for Atmospheric and Space Physics
Dols, Vincent; University of Colorado at Boulder - CU > Laboratory for Atmospheric and Space Physics
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Swift, Daniel; University of Alaska Fairbanks > Geophysical Institute
Language :
English
Title :
Power transmission and particle acceleration along the Io flux tube
Publication date :
2010
Journal title :
Journal of Geophysical Research. Space Physics
ISSN :
2169-9380
eISSN :
2169-9402
Publisher :
American Geophysical Union (AGU), Washington, United States - District of Columbia
Acuna, M. H., F. M. Neubauer, and N. F. Ness (1981), Standing Alfven wave current system at Io-Voyager 1 observations, J. Geophys. Res., 86, 8513-8521, doi:10.1029/JA086iA10p08513.
Alexandrova, O., et al. (2004), Cluster observations of finite amplitude Alfvén waves and small-scale magnetic filaments downstream of a quasi-perpendicular shock, J. Geophys. Res., 109, A05207, doi:10.1029/ 2003JA010056.
Andersson, L., and R. E. Ergun (2006), Acceleration of antiearthward electron fluxes in the auroral region, J. Geophys. Res., 111, A07203, doi:10.1029/2005JA011261.
Andersson, L., R. E. Ergun, D. L. Newman, J. P. McFadden, C. W. Carlson, and Y.-J. Su (2002a), Characteristics of parallel electric fields in the downward current region of the aurora, Phys. Plasmas, 9, 3600-3609, doi:10.1063/1.1490134.
Andersson, L., N. Ivchenko, J. Clemmons, A. A. Namgaladze, B. Gustavsson, J.-E. Wahlund, L. Eliasson, and R. Y. Yurik (2002b), Electron signatures and Alfvén waves, J. Geophys. Res., 107(A9), 1244, doi:10.1029/ 2001JA900096.
Bagenal, F. (1994), Empirical model of the Io plasma torus: Voyager measurements, J. Geophys. Res., 99, 11,043-11,062, doi:10.1029/93JA02908.
Bigg, E. K. (1964), Influence of the satellite Io on Jupiter's decametric emission, Nature, 203, 1008-1010.
Block, L. P. (1988), Acceleration of auroral particles by magnetic-field aligned electric fields, Astrophys. Space Sci., 144, 135-147.
Bonfond, B., J.-C. Gérard, D. Grodent, and J. Saur (2007), Ultraviolet Io footprint short timescale dynamics, Geophys. Res. Lett., 34, L06201, doi:10.1029/2006GL028765.
Bonfond, B., D. Grodent, J.-C. Gérard, A. Radioti, J. Saur, and S. Jacobsen (2008), UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity?, Geophys. Res. Lett., 35, L05107, doi:10.1029/2007GL032418.
Bonfond, B., D. Grodent, J.-C. Gérard, A. Radioti, V. Dols, P. A. Delamere, and J. T. Clarke (2009), The IoUVfootprint: Location, inter-spot distances and tail vertical extent, J. Geophys. Res., 114, A07224, doi:10.1029/ 2009JA014312.
Burke, B. F., and K. L. Franklin (1955), Observations of a variable radio source associated with the planet Jupiter, J. Geophys. Res., 60, 213-217.
Carlson, C. W., et al. (1998), FAST observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops, and ion heating, Geophys. Res. Lett., 25, 2017-2020, doi:10.1029/98GL00851.
Champeaux, S., T. Passot, and P. L. Sulem (1997), Alfvén-wave filamentation, J. Plasma Phys., 58, 665-690, doi:10.1017/S0022377897006119.
Champeaux, S., T. Passot, and P. L. Sulem (1998), Transverse collapse of Alfvén wave-trains with small dispersion, Phys. Plasmas, 5, 100-111, doi:10.1063/1.872678.
Chaston, C. C., C. W. Carlson, R. E. Ergun, and J. P. McFadden (2000), Alfvén waves, density cavities and electron acceleration observed from the FAST spacecraft, Phys. Scr. T, 84, 64-68, doi:10.1238/Physica.Topical. 084a00064.
Chaston, C. C., J. W. Bonnell, L. M. Peticolas, C. W. Carlson, J. P.McFadden, and R. E. Ergun (2002), Driven Alfven waves and electron acceleration: A FAST case study, Geophys. Res. Lett., 29(11), 1535, doi:10.1029/ 2001GL013842.
Chaston, C. C., et al. (2005), Drift-kinetic Alfvén waves observed near a reconnection X line in the Earth's magnetopause, Phys. Rev. Lett., 95(6), 065002, doi:10.1103/PhysRevLett.95.065002.
Chaston, C. C., A. J. Hull, J. W. Bonnell, C. W. Carlson, R. E. Ergun, R. J. Strangeway, and J. P. McFadden (2007a), Large parallel electric fields, currents, and density cavities in dispersive Alfvén waves above the aurora, J. Geophys. Res., 112, A05215, doi:10.1029/2006JA012007.
Chaston, C. C., C. W. Carlson, J. P. McFadden, R. E. Ergun, and R. J. Strangeway (2007b), How important are dispersive Alfvén waves for auroral particle acceleration?, Geophys. Res. Lett., 34, L07101, doi:10.1029/ 2006GL029144.
Chen, L.-J., C. A. Kletzing, S. Hu, and S. R. Bounds (2005), Auroral electron dispersion below inverted-V energies: Resonant deceleration and acceleration by Alfvén waves, J. Geophys. Res., 110, A10S13, doi:10.1029/2005JA011168.
Chust, T., A. Roux, W. S. Kurth, D. A. Gurnett, M. G. Kivelson, and K. K. Khurana (2005), Are Io's Alfvén wings filamented? Galileo observations, Planet. Space Sci., 53, 395-412, doi:10.1016/j.pss.2004.09.021.
Clark, A. E., and C. E. Seyler (1999), Electron beam formation by small-scale oblique inertial Alfvén waves, J. Geophys. Res., 104, 17,233-17,250, doi:10.1029/1999JA900212.
Clarke, J. T., et al. (1996), Far-ultraviolet imaging of Jupiter's aurora and the lo "footprint", Science, 274, 404-409, doi:10.1126/science. 274.5286.404.
Clarke, J. T., L. Ben Jaffel, and J.-C. Gérard (1998), Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission, J. Geophys. Res., 103, 20,217-20,236, doi:10.1029/98JE01130.
Clarke, J. T., et al. (2002), Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter, Nature, 415, 997-1000.
Connerney, J. E. P., and T. Satoh (2000), The H3 + ion: A remote diagnostic of the Jovian magnetosphere, Philos. Trans. R. Soc. London, Ser. A, 358, 2471-2483.
Connerney, J. E. P., R. Baron, T. Satoh, and T. Owen (1993), Images of excited H3 + at the foot of the Io flux tube in Jupiter's atmosphere, Science, 262, 1035-1038, doi:10.1126/science.262.5136.1035.
Connerney, J. E. P., M. H. Acuña, N. F. Ness, and T. Satoh (1998), New models of Jupiter's magnetic field constrained by the Io flux tube footprint, J. Geophys. Res., 103, 11,929-11,940, doi:10.1029/97JA03726.
Crary, F. J. (1997), On the generation of an electron beam by Io, J. Geophys. Res., 102, 37-50, doi:10.1029/96JA02409.
Das, A. C., and W.-H. Ip (1992), Particle acceleration by kinetic Alfven waves in the Io plasma torus, Planet. Space Sci., 40, 1499-1502, doi:10.1016/0032-0633(92)90046-Q.
Delamere, P. A., F. Bagenal, R. Ergun, and Y.-J. Su (2003), Momentum transfer between the Io plasma wake and Jupiter's ionosphere, J. Geophys. Res., 108(A6), 1241, doi:10.1029/2002JA009530.
Dols, V., J. C. Gérard, J. T. Clarke, J. Gustin, and D. Grodent (2000), Diagnostics of the Jovian aurora deduced from ultraviolet spectroscopy: Model and HST/GHRS observations, Icarus, 147, 251-266, doi:10.1006/ icar.2000.6415.
Dols, V., P. A. Delamere, and F. Bagenal (2008), A multispecies chemistry model of Io's local interaction with the Plasma Torus, J. Geophys. Res., 113, A09208, doi:10.1029/2007JA012805.
Ergun, R. E., Y.-J. Su, L. Andersson, F. Bagenal, P. A. Delemere, R. L. Lysak, and R. J. Strangeway (2006), S bursts and the Jupiter ionospheric Alfvén resonator, J. Geophys. Res., 111, A06212, doi:10.1029/ 2005JA011253.
Ergun, R. E., L. Ray, P. A. Delamere, F. Bagenal, V. Dols, and Y. J. Su (2009), Generation of parallel electric fields in the Jupiter-Io torus wake region, J. Geophys. Res., 114, A05201, doi:10.1029/2008JA013968.
Frank, L. A., and W. R. Paterson (1999), Intense electron beams observed at Io with the Galileo spacecraft, J. Geophys. Res., 104, 28,657-28,669.
Galtier, S. (2009), Wave turbulence in magnetized plasmas, Nonlinear Proc. Geophys., 16, 83-98.
Galtier, S., S. V. Nazarenko, A. C. Newell, and A. Pouquet (2000), A weak turbulence theory for incompressible magnetohydrodynamics, J. Plasma Phys., 63, 447-488, doi:10.1017/S0022377899008284.
Gérard, J.-C., J. Gustin, D. Grodent, P. Delamere, and J. T. Clarke (2002), Excitation of the FUV Io tail on Jupiter: Characterization of the electron precipitation, J. Geophys. Res., 107(A11), 1394, doi:10.1029/ 2002JA009410.
Gérard, J.-C., A. Saglam, D. Grodent, and J. T. Clarke (2006), Morphology of the ultraviolet Io footprint emission and its control by Io's location, J. Geophys. Res., 111, A04202, doi:10.1029/2005JA011327.
Goertz, C. K. (1983), The Io-control of Jupiter's decametric radiation - The Alfven wave model, Adv. Space Res., 3, 59-70, doi:10.1016/0273-1177 (83)90257-90260
Grodent, D., B. Bonfond, A. Radioti, J.-C. Gérard, X. Jia, J. D. Nichols, and J. T. Clarke (2009), Auroral footprint of Ganymede, J. Geophys. Res., 114, A07212, doi:10.1029/2009JA014289.
Gurnett, D. A., and C. K. Goertz (1981), Multiple Alfven wave reflections excited by Io origin of the Jovian decametric arcs, J. Geophys. Res., 86, 717-722, doi:10.1029/JA086iA02p00717.
Gurnett, D. A., W. S. Kurth, A. Roux, S. J. Bolton, and C. F. Kennel (1996), Galileo plasma wave observations in the Io plasma torus and near Io, Science, 274, 391-392.
Hess, S. (2008), Processus d'accélération et émissions radio dans le circuit Io-Jupiter, Ph.D. thesis, Univ. Pierre et Marie Curie, Paris.
Hess, S., P. Zarka, and F. Mottez (2007a), Io-Jupiter interaction, millisecond bursts and field-aligned potentials, Planet. Space Sci., 55, 89-99, doi:10.1016/j.pss.2006.05.016.
Hess, S., F. Mottez, and P. Zarka (2007b), Jovian S burst generation by Alfvén waves, J. Geophys. Res., 112, A11212, doi:10.1029/2006JA012191.
Hess, S., B. Cecconi, and P. Zarka (2008), Modeling of Io-Jupiter decameter arcs, emission beaming and energy source, Geophys. Res. Lett., 35, L13107, doi:10.1029/2008GL033656.
Hess, S., F. Mottez, and P. Zarka (2009a), Effect of electric potential structures on Jovian S-burst morphology, Geophys. Res. Lett., 36, L14101, doi:10.1029/2009GL039084.
Hess, S., P. Zarka, F. Mottez, and V. B. Ryabov (2009b), Electric potential jumps in the Io-Jupiter flux tube, Planet. Space Sci., 57, 23-33, doi:10.1016/j.pss.2008.10.006.
Hess, S., A. Petin, P. Zarka, B. Cecconi, and B. Bonfond (2010), Modeling the Io-controlled radio-arcs: Lead angle and particle velocity measurements, Planet. Space Sci., in press.
Hill, T. W., and V. M. Vasyli?nas (2002), Jovian auroral signature of Io's corotational wake, J. Geophys. Res., 107(A12), 1464, doi:10.1029/ 2002JA009514.
Hui, C., and C. E. Seyler (1992), Electron acceleration by Alfven waves in the magnetosphere, J. Geophys. Res., 97, 3953-3963, doi:10.1029/ 91JA03101.
Ingersoll, A. P., A. R. Vasavada, B. Little, C. D. Anger, S. J. Bolton, C. Alexander, K. P. Klaasen, and W. K. Tobiska (1998), Imaging Jupiter's aurora at visible wavelengths, Icarus, 135, 251-264, doi:10.1006/ icar.1998.5971.
Jacobsen, S., F. M. Neubauer, J. Saur, and N. Schilling (2007), Io's nonlinear MHD-wave field in the heterogeneous Jovian magnetosphere, Geophys. Res. Lett., 34, L10202, doi:10.1029/2006GL029187.
Jones, S. T., and Y.-J. Su (2008), Role of dispersive Alfvén waves in generating parallel electric fields along the Io-Jupiter fluxtube, J. Geophys. Res., 113, A12205, doi:10.1029/2008JA013512.
Kivelson, M. G., K. K. Khurana, R. J. Walker, J. Warnecke, C. T. Russell, J. A. Linker, D. J. Southwood, and C. Polanskey (1996), Io's interaction with the plasma torus: Galileo magnetometer report, Science, 274, 396-398.
Kletzing, C. A. (1994), Electron acceleration by kinetic Alfvén waves, J. Geophys. Res., 99, 11,095-11,104, doi:10.1029/94JA00345.
Lecacheux, A., M. Y. Boudjada, H. O. Rucker, J. L. Bougeret, R. Manning, and M. L. Kaiser (1998), Jovian decameter emissions observed by the Wind/WAVES radioastronomy experiment, Astron. Astrophys., 329, 776-784.
Louarn, P., J. E. Wahlund, T. Chust, H. de Feraudy, A. Roux, B. Holback, P. O. Dovner, A. I. Eriksson, and G. Holmgren (1994), Observation of kinetic Alfvén waves by the FREJA spacecraft, Geophys. Res. Lett., 21, 1847-1850, doi:10.1029/94GL00882.
Lysak, R. L., and Y. Song (2003), Kinetic theory of the Alfvén wave acceleration of auroral electrons, J. Geophys. Res., 108(A4), 8005, doi:10.1029/ 2002JA009406.
Mauk, B. H., D. J. Williams, and A. Eviatar (2001), Understanding Io's space environment interaction: Recent energetic electron measurements from Galileo, J. Geophys. Res., 106, 26,195-26,208, doi:10.1029/ 2000JA002508.
Moncuquet, M., F. Bagenal, and N. Meyer-Vernet (2002), Latitudinal structure of outer Io plasma torus, J. Geophys. Res., 107(A9), 1260, doi:10.1029/2001JA900124.
Mozer, F. S., C. A. Cattell, M. K. Hudson, R. L. Lysak, M. Temerin, and R. B. Torbert (1980), Satellite measurements and theories of low altitude auroral particle acceleration, Space Sci. Rev., 27, 155-213, doi:10.1007/ BF00212238.
Neubauer, F. M. (1980), Nonlinear standing Alfven wave current system at Io - Theory, J. Geophys. Res., 85, 1171-1178.
Prangé, R., D. Rego, D. Southwood, P. Zarka, S. Miller, and W. Ip (1996), Rapid energy dissipation and variability of the Io-Jupiter electrodynamic circuit, Nature, 379, 323-325, doi:10.1038/379323a0.
Prangé, R., D. Rego, L. Pallier, J. Connerney, P. Zarka, and J. Queinnec (1998), Detailed study of FUV Jovian auroral features with the post-COSTAR HST faint object camera, J. Geophys. Res., 103, 20,195- 20,216, doi:10.1029/98JE01128.
Pritchett, P. L., R. J. Strangeway, R. E. Ergun, and C. W. Carlson (2002), Generation and propagation of cyclotron maser emissions in the finite auroral kilometric radiation source cavity, J. Geophys. Res., 107(A12), 1437, doi:10.1029/2002JA009403.
Queinnec, J., and P. Zarka (1998), Io-controlled decameter arcs and Io-Jupiter interaction, J. Geophys. Res., 103, 26,649-26,666, doi:10.1029/ 98JA02435.
Queinnec, J., and P. Zarka (2001), Flux, power, energy and polarization of Jovian S-bursts, Planet. Space Sci., 49, 365-376.
Satoh, T., and J. E. P. Connerney (1999), Jupiter's H3 + Emissions viewed in corrected Jovimagnetic coordinates, Icarus, 141, 236-252, doi:10.1006/ icar.1999.6173.
Saur, J. (2004) A model of Io's local electric field for a combined Alfvénic and unipolar inductor far-field coupling, J. Geophys. Res., 109, A01210, doi:10.1029/2002JA009354.
Saur, J., F. M. Neubauer, D. F. Strobel, and M. E. Summers (1999), Threedimensional plasma simulation of Io's interaction with the Io plasma torus: Asymmetric plasma flow, J. Geophys. Res., 104, 25,105-25,126, doi:10.1029/1999JA900304.
Saur, J., F. M. Neubauer, D. F. Strobel, and M. E. Summers (2002a), Interpretation of Galileo's Io plasma and field observations: I0, I24, and I27 flybys and close polar passes, J. Geophys. Res., 107(A12), 1422, doi:10.1029/2001JA005067.
Saur, J., H. Politano, A. Pouquet, and W. H. Matthaeus (2002b), Evidence for weak MHD turbulence in the middle magnetosphere of Jupiter, Astron. Astrophys., 386, 699-708, doi:10.1051/0004-6361:20020305.
Sharma, R. P., M. Malik, and H. D. Singh (2008a), Nonlinear theory of kinetic Alfvén waves propagation and multiple filament formation, Phys. Plasmas, 15(6), 062902, doi:10.1063/1.2927445.
Sharma, R. P., S. Kumar, and H. D. Singh (2008b), Nonlinear evolution of kinetic Alfvén waves and the turbulent spectra, Phys. Plasmas, 15(8), 082902, doi:10.1063/1.2970939.
Shukla, A., and R. P. Sharma (2002), Mutual nonlinear interaction between two kinetic Alfven waves and its effect on filamentation: Applications to solar wind and coronal heating, J. Geophys. Res., 107(A11), 1338, doi:10.1029/2001JA009135.
Shukla, P. K., and L. Stenflo (2000), Generation of localized density perturbations by shear Alfvén waves, Phys. Plasmas, 7, 2738-2739, doi:10.1063/1.874124.
Stasiewicz, K., G. Gustafsson, G. Marklund, P.-A. Lindqvist, J. Clemmons, and L. Zanetti (1997), Cavity resonators and Alfvén resonance cones observed on Freja, J. Geophys. Res., 102, 2565-2576, doi:10.1029/ 96JA03462.
Su, Y.-J., R. E. Ergun, F. Bagenal, and P. A. Delamere (2003), Io-related Jovian auroral arcs: Modeling parallel electric fields, J. Geophys. Res., 108(A2), 1094, doi:10.1029/2002JA009247.
Su, Y.-J., S. T. Jones, R. E. Ergun, F. Bagenal, S. E. Parker, P. A. Delamere, and R. L. Lysak (2006), Io-Jupiter interaction: Alfvén wave propagation and ionospheric Alfvén resonator, J. Geophys. Res., 111, A06211, doi:10.1029/2005JA011252.
Su, Y.-J., L. Ma, R. E. Ergun, P. L. Pritchett, and C. W. Carlson (2008), Short-burst auroral radiations in Alfvénic acceleration regions: FAST observations, J. Geophys. Res., 113, A08214, doi:10.1029/2007JA012896.
Swift, D. W. (2007), Simulation of auroral electron acceleration by inertial Alfvén waves, J. Geophys. Res., 112, A12207, doi:10.1029/2007JA012423.
Treumann, R. A. (2006), The electron cyclotron maser for astrophysical application, Astron. Astrophys. Rev., 13, 229-315, doi:10.1007/s00159-006-0001- y.
Vasavada, A. R., A. H. Bouchez, A. P. Ingersoll, B. Little, C. D. Anger, and The Galileo SSI Team (1999), Jupiter's visible aurora and Io footprint, J. Geophys. Res., 104, 27,133-27,142, doi:10.1029/1999JE001055.
Watt, C. E. J., and R. Rankin (2008), Electron acceleration and parallel electric fields due to kinetic Alfvén waves in plasma with similar thermal and Alfvén speeds, Adv. Space Res., 42, 964-969, doi:10.1016/j.asr. 2007.03.030.
Williams, D. J., and R. M. Thorne (2003), Energetic particles over Io's polar caps, J. Geophys. Res., 108(A11), 1397, doi:10.1029/2003JA009980.
Williams, D. J., et al. (1996), Electron beams and ion composition measured at Io and in its torus, Science, 274, 401-403, doi:10.1126/science. 274.5286.401.
Williams, D. J., R. M. Thorne, and B. Mauk (1999), Energetic electron beams and trapped electrons at Io, J. Geophys. Res., 104, 14,739-14,754, doi:10.1029/1999JA900115.
Wright, A. N. (1987), The interaction of Io's Alfven waves with the Jovian magnetosphere, J. Geophys. Res., 92, 9963-9970, doi:10.1029/ JA092iA09p09963.
Yung, Y. L., G. R. Gladstone, K. M. Chang, J. M. Ajello, and S. K. Srivastava (1982), H2 fluorescence spectrum from 1200 to 1700 A by electron impact - Laboratory study and application to Jovian aurora, Astrophys. J., 254, L65-L69, doi:10.1086/183757.
Zarka, P. (1998), Auroral radio emissions at the outer planets: Observations and theories, J. Geophys. Res., 103, 20,159-20,194, doi:10.1029/ 98JE01323.
Zarka, P., T. Farges, B. P. Ryabov, M. Abada-Simon, and L. Denis (1996), A scenario for Jovian S-bursts, Geophys. Res. Lett., 23, 125-128, doi:10.1029/95GL03780.