ABABNEH, F., JERMIIN, L.S., MA, C., and ROBINSON, J., 2006. Matched-pairs tests of homogeneity with applications to homologous nucleotide sequences. Bioinformatics 22: 1225-1231.
ABASCAL, F., ZARDOYA, R., and POSADA, D., 2005. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104-2105.
ABOUHEIF, E., ZARDOYA, R., and MEYER, A., 1998. Limitations of metazoan 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion. J. Mol. Evol. 47: 394-405.
ADOUTTE, A., BALAVOINE, G., LARTILLOT, N., LESPINET, O., PRUD'HOMME, B., and de ROSA, R., 2000. The new animal phylogeny: reliability and implications. Proc. Natl. Acad. Sci. USA 97: 4453-4456.
AGUINALDO, A.M., TURBEVILLE, J.M., LINFORD, L.S., RIVERA, M.C., GAREY, J.R., RAFF, R.A., and LAKE, J.A., 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387: 489-493.
AKAIKE, H., 1973. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory (eds Petrov and Csaki). Akademiai Kiado, Budapest, pp. 267-281.
ALBERT, V.A., 2006. Parsimony and phylogenetics in the genomic age. In Parsimony, Phylogeny, and Genomics (ed.V.A. Albert). Oxford University Press, USA, pp. 1-11.
BAELE, G., RAES, J., Van de PEER, Y., and VANSTEELANDT, S., 2006. An improved statistical method for detecting heterotachy in nucleotide sequences. Mol. Biol. Evol. 23: 1397-1405.
BASTOLLA, U., FARWER, J., KNAPP, E.W., and VENDRUSCOLO, M., 2001. How to guarantee optimal stability for most representative structures in the Protein Data Bank. Proteins 44: 79-96.
BAUM, B.R., 1992. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41: 3-10.
BAURAIN, D., BRINKMANN, H., and PHILIPPE, H., 2007. Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors? Mol. Biol. Evol. 24: 6-9.
BEIKO, R.G., HARLOW, T.J., and RAGAN, M.A., 2005. Highways of gene sharing in prokaryotes. Proc. Natl. Acad. Sci. USA 102: 14332-14337.
BERNARDI, G., 1993. The vertebrate genome: isochores and evolution. Mol. Biol. Evol. 10: 186-204.
BLAIR, J.E., IKEO, K., GOJOBORI, T., and HEDGES, S.B., 2002. The evolutionary position of nematodes. BMC Evol Biol 2: 7.
BLANQUART, S. and LARTILLOT, N., 2006. A Bayesian compound stochastic process for modeling nonstationary and nonhomogeneous sequence evolution. Mol. Biol. Evol. 23: 2058-2071.
BLANQUART, S. and LARTILLOT, N., 2008. A site-and timeheterogeneous model of amino acid replacement. Mol. Biol. Evol. 25: 842-858.
BOURLAT, S.J., JULIUSDOTTIR, T., LOWE, C.J., FREEMAN, R., ARONOWICZ, J., KIRSCHNER, M., LANDER, E.S., THORNDYKE, M., NAKANO, H., KOHN, A.B., et al., 2006. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444: 85-88.
BOUSSAU, B. and GOUY, M., 2006. Efficient likelihood computations with nonreversible models of evolution. Syst. Biol. 55: 756-768.
BOWKER, A.H., 1948. A test for symmetry in contingency tables. J. Am. Stat. Assoc. 43: 572-574.
BRINKMANN, H., GIEZEN, M., ZHOU, Y., RAUCOURT, G.P., and PHILIPPE, H., 2005.An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst. Biol. 54: 743-757.
BRINKMANN, H. and PHILIPPE, H., 1999. Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol. Biol. Evol. 16: 817-825.
BROCHIER, C., BAPTESTE, E., MOREIRA, D., and PHILIPPE, H., 2002. Eubacterial phylogeny based on translational apparatus proteins. Trends Genet. 18: 1-5.
BRUNO, W.J., 1996. Modeling residue usage in aligned protein sequences via maximum likelihood. Mol. Biol. Evol. 13: 1368-1374.
BUDD, G.E. and JENSEN, S., 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. Camb. Philos. Soc. 75: 253-295.
BURLEIGH, J.G. and MATHEWS, S., 2004. Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. Am. J. Bot. 91: 1599-1613.
CANBACK, B., TAMAS, I., and ANDERSSON, S.G., 2004. A phylogenomic study of endosymbiotic bacteria. Mol. Biol. Evol. 21: 1110-1122.
CONWAY MORRIS, S., 2000. The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford University Press, USA.
DELSUC, F., SCALLY, M., MADSEN, O., STANHOPE, M.J., de JONG, W.W., CATZEFLIS, F.M., SPRINGER, M.S., and DOUZERY, E. J., 2002. Molecular phylogeny of living xenarthrans and the impact of character and taxon sampling on the placental tree rooting. Mol. Biol. Evol. 19: 1656-1671.
DELSUC, F., PHILLIPS, M.J., and PENNY, D., 2003. Comment on "Hexapod origins: monophyletic or paraphyletic?" Science 301: 1482; author reply 1482.
DELSUC, F., BRINKMANN, H., and PHILIPPE, H., 2005. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6: 361-375.
DELSUC, F., BRINKMANN, H., CHOURROUT, D., and PHILIPPE, H., 2006. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439: 965-968.
DELSUC, F., TSAGKOGEORGA, G., LARTILLOT, N., and PHILIPPE, H., 2008. Additional molecular support for the new chordate phylogeny. Genesis 46: 592-604.
DOPAZO, H. and DOPAZO, J., 2005. Genome-scale evidence of the nematode-arthropod clade. Genome Biol. 6: R41.
DOPAZO, H., SANTOYO, J., and DOPAZO, J., 2004. Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species. Bioinformatics 20: i116-i121.
DUNN, C.W., HEJNOL, A., MATUS, D.Q., PANG, K., BROWNE, W. E., SMITH, S.A., SEAVER, E., ROUSE, G.W., OBST, M., EDGECOMBE, G.D., et al. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452: 745-749.
EMBLEY, T.M., THOMAS, R.H., and WILLIAMS, R.A.D., 1993. Reduced thermophilic bias in the 16S rDNA sequence from Thermus ruber provides further support for a relationship between Thermus and Deinococcus. Syst. Appl. Microbiol. 16: 25-29.
FELSENSTEIN, J., 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27: 401-410.
FELSENSTEIN, J., 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376.
FELSENSTEIN, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 40: 783-791.
FITCH, W.M., 1979. Cautionary remarks on using gene expression events in parsimony procedures. Syst. Zool. 28: 375-379.
FITCH, W.M. and MARGOLIASH, E., 1967. Construction of phylogenetic trees. Science 155: 279-284.
FITCH, W.M. and MARKOWITZ, E., 1970. An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem. Genet. 4: 579-593.
FOSTER, P.G. and HICKEY, D.A., 1999. Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J. Mol. Evol. 48: 284-290.
FOSTER, P.G., JERMIIN, L.S., and HICKEY, D.A., 1997. Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria. J. Mol. Evol. 44: 282-288.
GALTIER, N., 2001. Maximum-likelihood phylogenetic analysis under a covarion-like model. Mol. Biol. Evol. 18: 866-873.
GALTIER, N. and GOUY, M., 1995. Inferring phylogenies from DNA sequences of unequal base compositions. Proc. Natl. Acad. Sci. USA 92: 11317-11321.
GALTIER, N. and GOUY, M., 1998. Inferring pattern and process: maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol. Biol. Evol. 15: 871-879.
GERMOT, A. and PHILIPPE, H., 1999. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family. J. Eukaryot. Microbiol. 46: 116-124.
GIBSON, A., GOWRI-SHANKAR, V., HIGGS, P.G., and RATTRAY, M., 2005. A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Mol. Biol. Evol. 22: 251-264.
GOLDMAN, N. and YANG, Z., 1994. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11: 725-736.
GOWRI-SHANKAR, V. and RATTRAY, M., 2007.Areversible jump method for Bayesian phylogenetic inference with a nonhomogeneous substitution model. Mol. Biol. Evol. 24: 1286-1299.
HENDY, M.D. and PENNY, D., 1989. A framework for the quantitative study of evolutionary trees. Syst. Zool. 38: 297-309.
HENNIG, W., 1966. Phylogenetic Systematics. University of Illinois Press, Urbana, IL.
HO, S.Y. and JERMIIN, L., 2004. Tracing the decay of the historical signal in biological sequence data. Syst. Biol. 53: 623-637.
HO, J.W., ADAMS, C.E., LEW, J.B., MATTHEWS, T.J., NG, C.C., SHAHABI-SIRJANI, A., TAN, L.H., ZHAO, Y., EASTEAL, S., WILSON, S.R., et al., 2006. SeqVis: visualization of compositional heterogeneity in large alignments of nucleotides. Bioinformatics 22: 2162-2163.
HRDY, I., HIRT, R.P., DOLEZAL, P., BARDONOVA, L., FOSTER, P. G., TACHEZY, J., and EMBLEY, T.M., 2004. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432: 618-622.
HUELSENBECK, J.P., 1991. When are fossils better than extant taxa in phylogenetic analysis? Syst. Zool. 40: 458-469.
HUELSENBECK, J.P., 2002. Testing a covariotide model ofDNA substitution. Mol. Biol. Evol. 19: 698-707.
HUELSENBECK, J.P., LARGET, B., and SWOFFORD, D., 2000. A compound poisson process for relaxing the molecular clock. Genetics 154: 1879-1892.
HUELSENBECK, J.P., JAIN, S., FROST, S.W., and POND, S.L., 2006. A Dirichlet process model for detecting positive selection in protein-coding DNA sequences. Proc. Natl. Acad. Sci. USA 103: 6263-6268.
INAGAKI, Y., SUSKO, E., FAST, N.M., and ROGER, A.J., 2004. Covarion shifts cause a long-branch attraction artifact that unites Microsporidia and Archaebacteria in EF-1a phylogenies. Mol. Biol. Evol. 21: 1340-1349.
JEFFROY, O., BRINKMANN, H., DELSUC, F., and PHILIPPE, H., 2006. Phylogenomics: the beginning of incongruence? Trends Genet. 22: 225-231.
JENSEN, J.L. and PEDERSEN, A.-M.K., 2000. Probabilistic models of DNA sequence evolution with context dependent rates of substitution. Adv. Appl. Probab. 32: 499-517.
JERMIIN, L., HO, S.Y., ABABNEH, F., ROBINSON, J., and LARKUM, A.W., 2004. The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. Syst. Biol. 53: 638-643.
JERMIIN, L.S., JAYASWAL, V., ABABNEH, F., and ROBINSON, J., 2008. Phylogenetic model evaluation. Methods Mol. Biol. 452: 331-364.
JUKES, T.H. and CANTOR, C.R., 1969. Evolution of protein molecules. In Mammalian Protein Metabolism (ed. H.N. Munro). Academic Press, New York, pp. 21-132.
JUKES, T.H. and BHUSHAN, V., 1986. Silent nucleotide substitutions and G+C content of some mitochondrial and bacterial genes. J. Mol. Evol. 24: 39-44.
KLUGE, A.G., 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38: 7-25.
KOLACZKOWSKI, B. and THORNTON, J.W., 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431: 980-984.
KOLACZKOWSKI, B. and THORNTON, J.W., 2008. A mixed branch length model of heterotachy improves phylogenetic accuracy. Mol. Biol. Evol. 25: 1054-1066.
LAKE, J.A., 1994. Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc. Natl. Acad. Sci. USA 91: 1455-1459.
LAKE, J.A. and RIVERA, M.C., 2004. Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol. Biol. Evol. 21: 681-690.
LANAVE, C., PREPARATA, G., SACCONE, C., and SERIO, G., 1984. A new method for calculating evolutionary substitution rates. J. Mol. Evol. 20: 86-93.
LARTILLOT, N. and PHILIPPE, H., 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21: 1095-1109.
LARTILLOT, N. and PHILIPPE, H., 2008. Improvement of molecular phylogenetic inference and the phylogeny of Bilateria. Philos. Trans. R Soc. Lond. B Biol. Sci. 363: 1463-1472.
LARTILLOT, N., BRINKMANN, H., and PHILIPPE, H., 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7 (Suppl 1): S4.
LECOINTRE, G., PHILIPPE, H., Van LE, H.L., and Le GUYADER, H., 1993. Species sampling has a major impact on phylogenetic inference. Mol. Phylogenet. Evol. 2: 205-224.
LEIGH, J.W., SUSKO, E., BAUMGARTNER, M., and ROGER, A.J., 2008. Testing congruence in phylogenomic analysis. Syst. Biol. 57: 104-115.
LEMMON, A.R. and MORIARTY, E.C., 2004. The importance of proper model assumption in Bayesian phylogenetics. Syst. Biol. 53: 265-277.
LIU, F.G., MIYAMOTO, M.M., FREIRE, N.P., ONG, P.Q., TENNANT, M.R., YOUNG, T.S., and GUGEL, K.F., 2001. Molecular and morphological supertrees for eutherian (placental) mammals. Science 291: 1786-1789.
LOCKHART, P.J., HOWE, C.J., BRYANT, D.A., BEANLAND, T.J., and LARKUM, A.W., 1992. Substitutional bias confounds inference of cyanelle origins from sequence data. J. Mol. Evol. 34: 153-162.
LOCKHART, P., STEEL, M., HENDY, M., and PENNY, D., 1994. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11: 605-612.
LOCKHART, P.J., LARKUM, A.W., STEEL, M., WADDELL, P.J., and PENNY, D., 1996. Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. Proc. Natl. Acad. Sci. USA 93: 1930-1934.
LOCKHART, P.J., STEEL, M.A., BARBROOK, A.C., HUSON, D., CHARLESTON, M.A., and HOWE, C.J., 1998. A covariotide model explains apparent phylogenetic structure of oxygenic photosynthetic lineages. Mol. Biol. Evol. 15: 1183-1188.
LOPEZ, P., FORTERRE, P., and PHILIPPE, H., 1999. The root of the tree of life in the light of the covarion model. J. Mol. Evol. 49: 496-508.
LOPEZ, P., CASANE, D., and PHILIPPE, H., 2002. Heterotachy, an important process of protein evolution. Mol. Biol. Evol. 19: 1-7.
MADDISON, W.P., 1997. Gene trees in species. Syst. Biol. 46: 523-536.
MATUS, D.Q., COPLEY, R.R., DUNN, C.W., HEJNOL, A., ECCLESTON, H., HALANYCH, K.M., MARTINDALE, M.Q., and TELFORD, M.J., 2006. Broad taxon and gene sampling indicate that chaetognaths are protostomes. Curr. Biol. 16: R575-576.
MAYROSE, I., FRIEDMAN, N., and PUPKO, T., 2005. A Gamma mixture model better accounts for among site rate heterogeneity. Bioinformatics 21 (Suppl 2): ii151-ii158.
MISOF, B., ANDERSON, C.L., BUCKLEY, T.R., ERPENBECK, D., RICKERT, A., and MISOF, K., 2002. An empirical analysis of mt 16S rRNA covarion-like evolution in insects: sitespecific rate variation is clustered and frequently detected. J. Mol. Evol. 55: 460-469.
MIYAMOTO, M.M. and FITCH, W.M., 1996. Constraints on protein evolution and the age of the eubacteria/eukaryote split. Syst. Biol. 45: 568-575.
MIYAZAWA, S. and JERNIGAN, R.L., 1985. Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18: 534-552.
MONTERO, L.M., SALINAS, J., MATASSI, G., and BERNARDI, G., 1990. Gene distribution and isochore organization in the nuclear genome of plants. Nucleic Acids Res. 18: 1859-1867.
MOOERS, A.O. and HOLMES, E.C., 2000. The evolution of base composition and phylogenetic inference. Trends Ecol. Evol. 15: 365-369.
MOREIRA, D., KERVESTIN, S., JEAN-JEAN, O., and PHILIPPE, H., 2002. Evolution of eukaryotic translation elongation and termination factors: variations of evolutionary rate and genetic code deviations. Mol. Biol. Evol. 19: 189-200.
MUSE, S.V. and GAUT, B.S., 1994. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol. Biol. Evol. 11: 715-724.
NOVACEK, M.J., 1992. Fossils, topologies, missing data, and the higher level phylogeny of eutherian mammals. Syst. Biol. 41: 58-73.
PEDERSEN, A.-M.K. and JENSEN, J.L., 2001.A dependent-rates model and an MCMC-based methodology for the maximum-likelihood analysis of sequences with overlapping reading frames. Mol. Biol. Evol. 18: 763-776.
PENNY, D., MCCOMISH, B.J., CHARLESTON, M.A., and HENDY, M.D., 2001. Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J. Mol. Evol. 53: 711-723.
PHILIP, G.K., CREEVEY, C.J., and MCINERNEY, J.O., 2005. The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. Mol. Biol. Evol. 22: 1175-1184.
PHILIPPE, H., 2008. Less is more: decreasing the number of scientific conferences to promote economic degrowth. Trends Genet. 24: 265-267.
PHILIPPE, H. and GERMOT, A., 2000. Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol. Biol. Evol. 17: 830-834.
PHILIPPE, H. and LOPEZ, P., 2001. On the conservation of protein sequences in evolution. Trends Biochem. Sci. 26: 414-416.
PHILIPPE, H. and TELFORD, M.J., 2006. Large-scale sequencing and the new animal phylogeny. Trends Ecol. Evol. 21: 614-620.
PHILIPPE, H., CHENUIL, A., and ADOUTTE, A., 1994a. Can the Cambrian explosion be inferred through molecular phylogeny? Development 120: S15-S25.
PHILIPPE, H., SoRHANNUS, U., BAROIN, A., PERASSO, R., GASSE, F., and ADOUTTE, A., 1994b. Comparison of molecular and paleontological data in diatoms suggests a major gap in the fossil record. J. Evol. Biol. 7: 247-265.
PHILIPPE, H., LOPEZ, P.,BRINKMANN, H.,BUDIN, K.,GERMOT, A., LAURENT, J., MOREIRA, D., MULLER, M., and Le GUYADER, H., 2000. Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc. R. Soc. Lond. Biol. Sci. 267: 1213-1221.
PHILIPPE, H., SNELL, E.A., BAPTESTE, E., LOPEZ, P.,HOLLAND, P. W., and CASANE, D., 2004. Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol. Biol. Evol. 21: 1740-1752.
PHILIPPE, H., LARTILLOT, N., and BRINKMANN, H., 2005b. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol. Biol. Evol. 22: 1246-1253.
PHILIPPE, H., BRINKMANN, H., MARTINEZ, P., RIUTORT, M., and BAGUNA, J., 2007. Acoel flatworms are not platyhelminthes: evidence from phylogenomics. PLoS ONE 2: e717.
PHILLIPS, M.J. and PENNY, D., 2003. The root of the mammalian tree inferred from whole mitochondrial genomes. Mol. Phylogenet. Evol. 28: 171-185.
PHILLIPS, M.J., DELSUC, F., and PENNY, D., 2004. Genomescale phylogeny and the detection of systematic biases. Mol. Biol. Evol. 21: 1455-1458.
PISANI, D., 2004. Identifying and removing fast-evolving sites using compatibility analysis: an example from the Arthropoda. Syst. Biol. 53: 978-989.
POSADA, D. and CRANDALL, K.A., 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818.
QIU, Y.-L. and ESTABROOK, G.F., 2008. Inference of phylogenetic relationships among key angiosperm lineages using a compatibility method on a molecular data set. J. Syst. Evol. 46: 130-141.
RAGAN, M.A., 1992. Phylogenetic inference based on matrix representation of trees. Mol. Phylogenet. Evol. 1: 53-58.
ROBINSON, D.M., JONES, D.T., KISHINO, H., GOLDMAN, N., and THORNE, J.L., 2003. Protein evolution with dependence among codons due to tertiary structure. Mol. Biol. Evol. 20: 1692-1704.
RODRIGUE, N., LARTILLOT, N., BRYANT, D., and PHILIPPE, H., 2005. Site interdependence attributed to tertiary structure in amino acid sequence evolution. Gene 347: 207-217.
RODRIGUE, N., PHILIPPE, H., and LARTILLOT, N., 2006. Assessing site-interdependent phylogenetic models of sequence evolution. Mol. Biol. Evol. 23: 1762-1775.
RODRIGUE, N., LARTILLOT, N., and PHILIPPE, H., 2008. Bayesian comparisons of codon substitution models. Genetics 180: 1579-1591.
RODRIGUEZ-EZPELETA, N., BRINKMANN, H., BURGER, G., ROGER, A.J., GRAY, M.W., PHILIPPE, H., and LANG, B.F., 2007a. Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr. Biol. 17: 1420-1425.
RODRIGUEZ-EZPELETA, N., BRINKMANN, H., ROURE, B., LARTILLOT, N., LANG, B.F., and PHILIPPE, H., 2007b. Detecting and overcoming systematic errors in genome-scale phylogenies. Syst. Biol. 56: 389-399.
ROKAS, A., WILLIAMS, B.L., KING, N., and CARROLL, S.B., 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798-804.
ROKAS, A., KRUGER, D., and CARROLL, S.B., 2005. Animal evolution and the molecular signature of radiations compressed in time. Science 310: 1933-1938.
ROURE, B., RODRIGUEZ-EZPELETA, N., and PHILIPPE, H., 2007. SCaFoS: a tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evol. Biol. 7 (Suppl 1): S2.
RUIZ-TRILLO, I., RIUTORT, M., LITTLEWOOD, D.T., HERNIOU, E. A., and BAGUNA, J., 1999. Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science 283: 1919-1923.
SALTER, L.A., 2001. Complexity of the likelihood surface for a large DNA dataset. Syst. Biol. 50: 970-978.
SCHWARZ, G., 1978. Estimating the dimension of a model. Ann. Stat. 6: 461-464.
SIEPEL, A. and HAUSSLER, D., 2004. Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol. Biol. Evol. 21: 468-488.
SPENCER, M., SUSKO, E., and ROGER, A.J., 2005. Likelihood, parsimony, and heterogeneous evolution. Mol. Biol. Evol. 22: 1161-1164.
STECHMANN, A. and CAVALIER-SMITH, T., 2002. Rooting the eukaryote tree by using a derived gene fusion. Science 297: 89-91.
STEEL, M., 2005. Should phylogenetic models be trying to 'fit an elephant'? Trends Genet. 21: 307-309.
STUART, A., 1955. A test for homogeneity of the marginal distributions in a two-way classification. Biometrika 42: 412-416.
SULLIVAN, J. and JOYCE, P., 2005. Model selection in phylogenetics. Annu. Rev. Ecol. Evol. Syst. 36: 445-466.
SUSKO, E., SPENCER, M., and ROGER, A.J., 2005. Biases in phylogenetic estimation can be caused by random sequence segments. J. Mol. Evol. 61: 351-359.
SWOFFORD, D.L., OLSEN, G.J., WADDELL, P.J., and HILLIS, D.M., 1996. Phylogenetic inference. In Molecular Systematics (eds D.M. Hillis, C. Moritz, and B.K. Mable). Sinauer Associates, Inc., Sunderland, MA, pp. 407-514.
TAVARÉ, S., 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci. 17: 57-86.
THORNE, J.L. and GOLDMAN, N., 2003. Probabilistic models for the study of protein evolution. In Handbook of Statistical Genetics (eds D.J. Balding, M. Bishop, and C. Cannings). John Wiley & Sons, Ltd, Chichester, UK. pp. 209-226.
TUFFLEY, C. and STEEL, M., 1998. Modeling the covarion hypothesis of nucleotide substitution. Math. Biosci. 147: 63-91.
WALLER, R.F. and KEELING, P.J., 2006. Alveolate and chlorophycean mitochondrial cox2 genes split twice independently. Gene 383: 33-37.
WANG, H.C., SPENCER, M., SUSKO, E., and ROGER, A.J., 2007. Testing for covarion-like evolution in protein sequences. Mol. Biol. Evol. 24: 294-305.
WIENS, J.J., 1998. Does adding characters with missing data increase or decrease phylogenetic accuracy? Syst. Biol. 47: 625-640.
WILKINSON, M. and BENTON, M.J., 1995. Missing data and rhynchosaur phylogeny. Hist. Biol. 10: 137-150.
WOESE, C.R., ACHENBACH, L., ROUVIERE, P., and MANDELCO, L., 1991. Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst. Appl. Microbiol. 14: 364-371.
WOLF,Y.I., ROGOZIN, I.B., and KOONIN, E.V., 2004. Coelomata and not ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Res. 14: 29-36.
YANG, Z., 1993. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol. Biol. Evol. 10: 1396-1401.
YANG, Z., 1996a. Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol. Evol. 11: 367-370.
YANG, Z., 1996b. Maximum-likelihood models for combined analyses of multiple sequence data. J. Mol. Evol. 42: 587-596.
YANG, Z. and ROBERTS, D., 1995. On the use of nucleic acid sequences to infer early branchings in the tree of life. Mol. Biol. Evol. 12: 451-458.
YANG, Z. and NIELSEN, R., 2008. Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Mol. Biol. Evol. 25: 568-579.
ZHOU, Y., RODRIGUE, N., LARTILLOT, N., and PHILIPPE, H., 2007. Evaluation of the models handling heterotachy in phylogenetic inference. BMC Evol. Biol. 7: 206.
ZUCKERKANDL, E. and PAULING, L., 1965. Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins (eds V. Bryson and H.J. Vogel). Academic Press, New York. pp. 97-166.