[en] According to the chromalveolate hypothesis (Cavalier-Smith T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347-366), the four eukaryotic groups with chlorophyll c-containing plastids originate from a single photosynthetic ancestor, which acquired its plastids by secondary endosymbiosis with a red alga. So far, molecular phylogenies have failed to either support or disprove this view. Here, we devise a phylogenomic falsification of the chromalveolate hypothesis that estimates signal strength across the three genomic compartments: If the four chlorophyll c-containing lineages indeed derive from a single photosynthetic ancestor, then similar amounts of plastid, mitochondrial, and nuclear sequences should allow to recover their monophyly. Our results refute this prediction, with statistical support levels too different to be explained by evolutionary rate variation, phylogenetic artifacts, or endosymbiotic gene transfer. Therefore, we reject the chromalveolate hypothesis as falsified in favor of more complex evolutionary scenarios involving multiple higher order eukaryote-eukaryote endosymbioses.
Archibald JM. 2009. The puzzle of plastid evolution. Curr Biol. 19:R81-R88.
Baurain D, Brinkmann H, Philippe H. 2007. Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors? Mol Biol Evol. 24:6-9.
Bergthorsson U, Adams KL, Thomason B, Palmer JD. 2003. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197-201.
Bodyl A. 2005. Do plastid-related characters support the chromal-veolate hypothesis. J Phycol. 41:712-719.
Burger G, Lavrov DV, Forget L, Lang BF. 2007. Sequencing complete mitochondrial and plastid genomes. Nat Protoc. 2:603-614.
Burki F, Inagaki Y, Brate J, et al. (14 co-authors). 2009. Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to photo-synthetic chromalveolates. Genome Biol Evol. 2009:231-238.
Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J. 2007. Phylogenomics reshuffles the eukaryotic supergroups. PLoS One. 2:e790.
Burki F, Shalchian-Tabrizi K, Pawlowski J. 2008. Phylogenomics reveals a new 'megagroup? including most photosynthetic eukaryotes. Biol Lett. 4:366-369.
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17:540-552.
Cavalier-Smith T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporo-zoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol. 46:347-366.
Cavalier-Smith T. 2003. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukary-ote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond B Biol Sci. 358:109-133; discussion 133-134.
Cavalier-Smith T, Allsopp MT, Chao EE. 1994. Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic? Proc Natl Acad Sci USA. 91:11368-11372.
Delsuc F, Brinkmann H, Philippe H. 2005. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet. 6:361-375.
Deschamps P, Moreira D. 2009. Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes. Mol Biol Evol. 26:2745-2753.
Doolittle WF. 1999. Phylogenetic classification and the universal tree. Science 284:2124-2129.
Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG. 2001. The highly reduced genome of an enslaved algal nucleus. Nature 410:1091-1096.
Embley TM, Martin W. 2006. Eukaryotic evolution, changes and challenges. Nature 440:623-630.
Fast NM, Kissinger JC, Roos DS, Keeling PJ. 2001. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol. 18:418-426.
Felsenstein J. 2005. PHYLIP (Phylogeny Inference Package). Version 3.6. Distributed by the author. Seattle (WA): Department of Genome Sciences, University of Washington.
Hackett JD, Anderson DM, Erdner DL, Bhattacharya D. 2004. Dinoflagellates: a remarkable evolutionary experiment. Am J Bot. 91:1523-1534.
Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rummele SE, Bhattacharya D. 2007. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of 'Rhizaria? with chromalveolates. Mol Biol Evol. 24:1702-1713.
Hordijk W, Gascuel O. 2005. Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood. Bioinformatics 21:4338-4347.
Huelsenbeck JP. 2002. Testing a covariotide model of DNA substitution. Mol Biol Evol. 19:698-707.
Jeffroy O, Brinkmann H, Delsuc F, Philippe H. 2006. Phylogenomics: the beginning of incongruence? Trends Genet. 22:225-231.
Jobb G, von Haeseler A, Strimmer K. 2004. TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol. 4:18.
Keeling PJ. 2009. Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol. 56:1-8.
Kishino H, Thorne JL, Bruno WJ. 2001. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol. 18:352-361.
Lane CE, Archibald JM. 2008. The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol Evol. 23:268-275.
Lang BF, Burger G. 2007. Purification of mitochondrial and plastid DNA. Nat Protoc. 2:652-660.
Lartillot N, Brinkmann H, Philippe H. 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol. 7(1 Suppl):S4.
Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 21:1095-1109.
Lecointre G, Philippe H, Van Le HL, Le Guyader H. 1994. How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences. Mol Phylogenet Evol. 3:292-309.
Ludwig M, Gibbs SP. 1987. Are the nucleomorphs of cryptomonads and Chlorarachnion the vestigial nuclei of eukaryotic endo-symbionts. Ann N Y Acad Sci. 503:198-211.
Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D. 2009. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724-1726.
Nozaki H, Iseki M, Hasegawa M, Misawa K, Nakada T, Sasaki N, Watanabe M. 2007. Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes. Mol Biol Evol. 24:1592-1595.
Palmer JD. 2003. The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol. 39:4-12.
Patron NJ, Inagaki Y, Keeling PJ. 2007. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol. 17:887-891.
Patron NJ, Rogers MB, Keeling PJ. 2004. Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Eukaryot Cell. 3:1169-1175.
Petersen J, Teich R, Brinkmann H, Cerff R. 2006. A "green phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J Mol Evol. 62:143-157.
Philippe H. 1993. MUST, a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res. 21: 5264-5272.
Philippe H, Brinkmann H, Martinez P, Riutort M, Baguna J. 2007. Acoel flatworms are not platyhelminthes: evidence from phylogenomics. PLoS One. 2:e717.
Philippe H, Delsuc F, Brinkmann H, Lartillot N. 2005. Phylogenomics. Annu Rev Ecol Evol Syst. 36:541-562.
Philippe H, Snell EA, Bapteste E, Lopez P, Holland PW, Casane D. 2004. Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol Biol Evol. 21:1740-1752.
Poole AM, Penny D. 2006. Evaluating hypotheses for the origin of eukaryotes. BioEssays 29:74-84.
Popper KR. 1959. The logic of scientific discovery. New York: Basic Books
R-Development-Core-Team. 2008. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing.
Reyes-Prieto A, Weber AP, Bhattacharya D. 2007. The origin and establishment of the plastid in algae and plants. Annu Rev Genet. 41:147-168.
Rice DW, Palmer JD. 2006. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol. 4:31.
Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF. 2005. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol. 15:1325-1330.
Rodriguez-Ezpeleta N, Brinkmann H, Roure B, Lartillot N, Lang BF, Philippe H. 2007. Detecting and overcoming systematic errors in genome-scale phylogenies. Syst Biol. 56:389-399.
Rodriguez-Ezpeleta N, Philippe H, Brinkmann H, Becker B, Melkonian M. 2007. Phylogenetic analyses of nuclear, mitochon-drial and plastid multi-gene datasets support the placement of Mesostigma in the Streptophyta. Mol Biol Evol. 24:723-731.
Roure B, Rodriguez-Ezpeleta N, Philippe H. 2007. SCaFoS: a tool for Selection, Concatenation and Fusion of Sequences for phyloge-nomics. BMC Evol Biol. 7(1 Suppl):S2.
Sanchez-Puerta MV, Bachvaroff TR, Delwiche CF. 2007. Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol Phylogenet Evol. 44:885-897.
SAS. 1999. SAS/STAT user?s guide. Cary (NC): SAS Institute Inc.
Schmidt HA, Strimmer K, Vingron M, von Haeseler A. 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502-504.
Slamovits CH, Keeling PJ. 2008. Plastid-derived genes in the non-photosynthetic alveolate Oxyrrhis marina. Mol Biol Evol. 25: 1297-1306.
Springer MS, DeBry RW, Douady C, Amrine HM, Madsen O, de Jong WW, Stanhope MJ. 2001. Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction. Mol Biol Evol. 18:132-143.
Stelter K, El-Sayed NM, Seeber F. 2007. The expression of a plant-type ferredoxin redox system provides molecular evidence for a plastid in the early dinoflagellate Perkinsus marinus. Protist. 158:119-130.
Stiller JW. 2007. Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci. 12:391-396.
Swofford DL. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland (MA): Sinauer Associates Inc.
Teich R, Zauner S, Baurain D, Brinkmann H, Petersen J. 2007. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in Plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Protist. 158:263-276.
Teles-Grilo ML, Tato-Costa J, Duarte SM, Maia A, Casal G, Azevedo C. 2007. Is there a plastid in Perkinsus atlanticus (Phylum Perkinsozoa)? Eur J Protistol. 43:163-167.
Whelan S, Goldman N. 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 18: 691-699.
Yang Z. 1993. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol. 10:1396-1401. (Pubitemid 23352619)
Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol. 21:809-818.
Yoon HS, Hackett JD, Pinto G, Bhattacharya D. 2002. The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA. 99:15507-15512.