Abstract :
[en] An increase in the frequency of pulsatile gonadotropin-releasing hormone (GnRH) secretion in vitro and a reduction in LH response to GnRH in vivo characterize hypothalamic-pituitary maturation before puberty in the female rat. In girls migrating for international adoption, sexual precocity is frequent and could implicate former exposure to the insecticide dichlorodiphenyltrichloroethane (DDT), since a long-lasting DDT derivative has been detected in the serum of such children. We aimed at studying the effects of early transient exposure to estradiol (E 2) or DDT in vitro and in vivo in the infantile female rat. Using a static incubation system of hypothalamic explants from 15-day-old female rats, a concentration- and time-dependent reduction in GnRH interpulse interval (IPI) was seen during incubation with E 2 and DDT isomers. These effects were prevented by antagonists of alpha-amino-3-hydroxy-5-methyl-isoxazole-4 propionic acid (AMPA)/kainate receptors and estrogen receptor. Also, o,p '-DDT effects were prevented by an antagonist of the aryl hydrocarbon orphan dioxin receptor (AHR). After subcutaneous injections of E, or o,p '-DDT between Postnatal Days (PNDs) 6 and 10, a decreased GnRH IPI was observed on PND 15 as an ex vivo effect. After DDT administration, serum LH levels in response to GnRH were not different from controls on PIND 15, whereas they tended to be lower on PND 22. Subsequently, early vaginal opening (VO) and first estrus were observed together with a premature age-related decrease in LH response to GnRH. After prolonged exposure to E 2 between PNDs 6 and 40, VO occurred at an earlier age, but first estrus was delayed. We conclude that a transient exposure to E 2 or o,p '-DDT in early postnatal life is followed by early maturation of pulsatile GnRH secretion and, subsequently, early developmental reduction of LH response to GnRH that are possible mechanisms of the subsequent sexual precocity. The early maturation of pulsatile GnRH secretion could involve effects mediated through estrogen receptor and/or AHR as well as AMPA/kainate subtype of glutamate receptors.
Scopus citations®
without self-citations
51