Article (Scientific journals)
Smooth semiparametric and nonparametric Bayesian estimation of bivariate densities from bivariate histogram data
Lambert, Philippe
2011In Computational Statistics and Data Analysis, 55, p. 429-445
Peer Reviewed verified by ORBi
 

Files


Full Text
Lambert_2011_Smooth semiparametric and nonparametric Bayesian estimation of bivariate densities from bivariate histogram data.pdf
Publisher postprint (1.05 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Grouped data; Bivariate density estimation; Bayesian P-splines
Abstract :
[en] Penalized B-splines combined with the composite link model are used to estimate a bivariate density from a histogram with wide bins. The goals are multiple: they include the visualization of the dependence between the two variates, but also the estimation of derived quantities like Kendall’s tau, conditional moments and quantiles. Two strategies are proposed: the first one is semiparametric with flexible margins modeled using B-splines and a parametric copula for the dependence structure; the second one is nonparametric and is based on Kronecker products of the marginal B-spline bases. Frequentist and Bayesian estimations are described. A large simulation study quantifies the performances of the two methods under different dependence structures and for varying strengths of dependence, sample sizes and amounts of grouping. It suggests that Schwarz’s BIC is a good tool for classifying the competing models. The density estimates are used to evaluate conditional quantiles in two applications in social and in medical sciences.
Disciplines :
Mathematics
Author, co-author :
Lambert, Philippe  ;  Université de Liège - ULiège > Institut des sciences humaines et sociales > Méthodes quantitatives en sciences sociales
Language :
English
Title :
Smooth semiparametric and nonparametric Bayesian estimation of bivariate densities from bivariate histogram data
Publication date :
2011
Journal title :
Computational Statistics and Data Analysis
ISSN :
0167-9473
eISSN :
1872-7352
Publisher :
Elsevier Science, Amsterdam, Netherlands
Volume :
55
Pages :
429-445
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
CREATION D’OUTILS STATISTIQUES POUR L’ANALYSE DE DONNEES D’ENQUETES CENSUREES PAR INTERVALLE
Funders :
FSR research grant No. FSRC-08/42 from the University of Liège ; IAP research network No. P6/03 of the Belgian government (Belgian Science Policy)
Available on ORBi :
since 17 August 2010

Statistics


Number of views
84 (7 by ULiège)
Number of downloads
1 (1 by ULiège)

Scopus citations®
 
9
Scopus citations®
without self-citations
6
OpenCitations
 
7
OpenAlex citations
 
12

Bibliography


Similar publications



Contact ORBi