[en] Hole mobility in N,N′-diphenyl-N,N′-bis(1-naphtylphenyl)-1,1′-biphenyl-4,4′-diamine (α-NPD) is evaluated by electrical characterization in the ac regime. The frequency-dependent complex admittance and impedance of the structure consisting of the organic layer, grown by thermal evaporation, sandwiched by indium tin oxide and aluminum electrodes, are measured as functions of the applied dc voltage. The capacitance response shows negative values for frequencies below a characteristic value depending on the bias and ranging from 0.1 Hz up to 20 Hz. It increases with the modulation frequency and reaches a peak, the magnitude and position of which are functions of the applied voltage. For higher frequencies, a minimum can be observed before the capacitance increases again up to a constant value. A final decreasing occurs at frequency of 4×106 Hz. The analysis of the experimental data is performed by a detailed theoretical study of the steady-state and small-signal electrical characteristics of the device. Numerical calculations are based on the solution of the basic semiconductor equations for the system consisting of two electrodes connected by the semiconducting channel formed by the organic layer. The description explicitly includes a continuous distribution of trap density of states and a field-dependent carrier mobility. The spatially dependent charge carrier and occupied trap concentrations, as well as the various components to the total current density, are obtained for the dc and ac regimes and are analyzed for given bias and frequency. Based on a formalism used in the study of inorganic semiconductors, the results of the simulation show that the inductive contribution to the capacitance response originates from the modulation of the hole concentration in the organic material, leading to the corresponding carrier transit time. Moreover, the low-frequency behavior of the capacitance curves could be explained by the presence of a band of defect states which modifies the charge distribution within the organic layer and the injection of electrons from the cathode. We show that the latter contribution is also responsible for the negative values of the capacitance measured below 10 Hz. Good agreement is observed between the experimental and theoretical electrical characteristics, in particular for the differential susceptance results and the subsequent hole mobility values. Our approach can be a useful contribution for the methodology of obtaining mobilities from admittance measurements as it allows one to clarify the physical origin of the measured frequency-dependent capacitance and to check for the experimental procedure. This work finally leads to the formulation of the conditions under which small-signal ac measurements can be used to determine carrier mobility in organic devices.
Disciplines :
Physics
Author, co-author :
Nguyen, Ngoc Duy ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Schmeits, Marcel; Université de Liège - ULiège > Département de physique
Loebl, Hans-Peter; Philips Research Laboratories
Language :
English
Title :
Determination of charge carrier transport properties in organic devices by admittance spectroscopy : application to hole mobility in α-NPD
Publication date :
2007
Journal title :
Physical Review. B, Condensed Matter
ISSN :
0163-1829
eISSN :
1095-3795
Publisher :
American Institute of Physics, New York, United States - New York
L. Pautmier, R. Richter, and H. Bässler, Synth. Met. SYMEDZ 0379-6779 10.1016/0379-6779(90)90158-H 37, 271 (1990).
H. Bässler, Phys. Status Solidi B PSSBBD 0370-1972 10.1002/(SICI)1521-396X(199909)175:1<153::AID-PSSA153>3.0.CO;2-U 175, 15 (1993).
H. C. F. Martens, P. W. M. Blom, and H. F. M. Schoo, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.61.7489 61, 7489 (2000).
Y. Roichman and N. Tessler, Synth. Met. SYMEDZ 0379-6779 10.1016/S0379-6779(02)00596-9 135, 443 (2003).
W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W. M. Blom, D. M. de Leeuw, and M. A. J. Michels, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.206601 94, 206601 (2005).
C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91.216601 91, 216601 (2003).
E. Lebedev, Th. Dittrich, V. Petrova-Koch, S. Karg, and W. Brütting, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.120179 71, 2686 (1997).
A. J. Campbell, D. D. C. Bradley, and H. Antoniadis, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1334925 89, 3343 (2001).
M. Abkowitz, J. S. Facci, and J. Rehm, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.367030 83, 2670 (1998).
D. Poplavskyy and J. Nelson, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1525866 93, 341 (2003).
S. Karg, V. Dyakonov, M. Meier, W. Riess, and G. Paasch, Synth. Met. SYMEDZ 0379-6779 10.1016/0379-6779(94)90033-7 67, 165 (1994).
D. J. Pinner, R. H. Friend, and N. Tessler, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1811778 97, 014504 (2004).
P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.55.R656 55, R656 (1997).
L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, and P. J. Brock, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.123959 74, 1132 (1999).
H. C. F. Martens, H. B. Brom, and P. W. M. Blom, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.60.R8489 60, R8489 (1999).
P. W. M. Blom, H. C. F. Martens, and J. N. Huiberts, Synth. Met. SYMEDZ 0379-6779 10.1016/S0379-6779(00)00682-2 121, 1621 (2001).
S. Berleb and W. Brütting, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.89.286601 89, 286601 (2002).
H. H. P. Gommans, M. Kemerink, G. G. Andersson, and R. M. T. Pijper, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.69.155216 69, 155216 (2004).
H. H. P. Gommans, M. Kemerink, and R. A. J. Janssen, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.235204 72, 235204 (2005).
S. W. Tsang, S. K. So, and J. B. Xu, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.2158494 99, 013706 (2006).
J. Shao and G. T. Wright, Solid-State Electron. SSELA5 0038-1101 10.1016/0038-1101(61)90011-9 3, 291 (1961).
H. C. F. Martens, J. N. Huiberts, and P. W. M. Blom, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.1311599 77, 1852 (2000).
H. C. F. Martens, W. F. Pasveer, H. B. Brom, J. N. Huiberts, and P. W. M. Blom, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.63.125328 63, 125328 (2001).
D. Poplavskyy and F. So, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.2149495 99, 033707 (2006).
A. B. Walker, A. Kambili, and S. J. Martin, J. Phys.: Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/14/42/303 14, 9825 (2002).
S. Selberherr, Analysis and Simulation of Semiconductor Devices (Wiley, New York, 1981).
J. Shen and J. Yang, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.367942 83, 7706 (1998).
E. Tutis, M. N. Bussac, B. Masenelli, M. Carrard, and L. Zuppiroli, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1327286 89, 430 (2001).
C. D. J. Blades and A. B. Walker, Synth. Met. SYMEDZ 0379-6779 111-112, 335 (2000).
B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. Campbell Scott, and W. Riess, IEEE J. Sel. Top. Quantum Electron. IJSQEN 1077-260X 10.1109/JSTQE.2003. 818852 9, 723 (2003).
G. Paasch, A. Nesterov, and S. Scheinert, Synth. Met. SYMEDZ 0379-6779 10.1016/S0379-6779(03)00191-7 139, 425 (2003).
N. Tessler, D. J. Pinner, and R. H. Friend, Synth. Met. SYMEDZ 0379-6779 111-112, 269 (2000).
D. J. Pinner, R. H. Friend, and N. Tessler, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.371488 86, 5116 (1999).
M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).
D. Poplavskyy, W. Su, F. Pschenitzka, and F. So, Proc. SPIE PSISDG 0277-786X 5519, 110 (2004).
S. Naka, H. Okada, H. Onnagawa, Y. Yamaguchi, and T. Tsutsui, Synth. Met. SYMEDZ 0379-6779 111-112, 331 (2000).
M. Schmeits and N. D. Nguyen, Phys. Status Solidi A PSSABA 0031-8965 10.1002/pssa.200521004 202, 2764 (2005).
N. D. Nguyen and M. Schmeits, Phys. Status Solidi A PSSABA 0031-8965 10.1002/pssa.200622014 203, 1901 (2006).
E. H. Rohderick and R. H. Williams, Metal-Semiconductor Contacts (Clarendon, Oxford, 1988).
M. Sakhaf and M. Schmeits, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.363750 80, 6839 (1996).
M. A. Baldo and S. R. Forrest, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.64.085201 64, 085201 (2001).
T. Lindner, G. Paasch, and S. Scheinert, J. Mater. Res. JMREEE 0884-2914 10.1557/JMR.2004.0265 19, 2014 (2004).
S. J. Konezny, D. L. Smith, M. E. Galvin, and L. J. Rothberg, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.2186374 99, 064509 (2006).