Monofluoride Bridged, Binuclear Metallacycles of First Row Transition Metals Supported by Third Generation Bis(1-pyrazolyl)methane Ligands: Unusual Magnetic Properties
[en] The reaction of M(BF4)2•xH2O, where M is Fe, Co, Cu, and Zn, and the bitopic, bis(pyrazolyl)methane ligand m-[CH(pz)2]2C6H4, Lm, where pz is a pyrazolyl ring, yields the monofluoride bridged, binuclear [M2(μ-F)(μ-Lm)2](BF4)3 complexes. In contrast, a similar reaction of Lm with Ni(BF4)2•6H2O yields dibridged [Ni2(μ-F)2(μ-Lm)2](BF4)2. The solid state structures of seven [M2(μ-F)(μ-Lm)2](BF4)3 complexes, with M = Fe, Co, Cu, and Zn, indicate that the divalent metal ion is in a five-coordinate, trigonal bipyramidal, coordination environment with either a linear M–F–M bridging arrangement in five of the complexes, or with a slightly bent Cu–F–Cu bridge in two of the complexes. NMR results indicate that [Zn2(μ-F)(μ-Lm)2](BF4)3 retains its dimeric structure in solution. The [Ni2(μ-F)2(μ-Lm)2](BF4)2 complex has a dibridging fluoride structure that has a six-coordination environment about each nickel(II) ion. In the solid state, the [Fe2(μ-F)(μ-Lm)2](BF4)3 and [Co2(μ-F)(μ-Lm)2](BF4)3 complexes show weak intramolecular antiferromagnetic exchange coupling between the two metal(II) ions with J values of –10.4 and –0.67 cm–1, respectively; there is no observed long-range magnetic order. Three different solvates of [Cu2(μ-F)(μ-Lm)2](BF4)3 are diamagnetic between 5 and 400 K, thus showing strong antiferromagnetic exchange interactions of –600 cm–1 or more negative. Mössbauer spectra indicate that [Fe2(μ-F)(μ-Lm)2](BF4)3 exhibits no long-range magnetic order between 4.2 and 295 K and isomer shifts that are consistent with the presence of five-coordinate, high-spin iron(II).
Disciplines :
Chemistry
Author, co-author :
Reger, Daniel; University of North Carolina
Watson, R. P.; University of North Carolina
Foley, E. A.; University of North Carolina
Pelecchia, P. J.; University of North Carolina
Smith, M. D.; University of North Carolina
Grandjean, Fernande ; Université de Liège - ULiège > Département de physique > Département de physique
Long, Gary J.
Language :
English
Title :
Monofluoride Bridged, Binuclear Metallacycles of First Row Transition Metals Supported by Third Generation Bis(1-pyrazolyl)methane Ligands: Unusual Magnetic Properties
Publication date :
2009
Journal title :
Inorganic Chemistry
ISSN :
0020-1669
eISSN :
1520-510X
Publisher :
American Chemical Society, Washington, United States - District of Columbia
(h) Worm, K.; Chu, F.; Matsumoto, K.; Best, M. D.; Lynch, V.; Anslyn, E. V. Chem.-Eur. J. 2003, 9, 741.
(i) Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenreim, C. J.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2005, 127, 7857.
(j) Tomat, E.; Cuesta, L.; Lynch, V. M.; Sessler, J. L. Inorg. Chem. 2007, 46, 6224.
Kahn, O. Molecular Magnetism; VCH Publishers, Inc.: New York, 1993.
(a) Sur, S. K. J. Magn. Reson. 1989, 82, 169.
(b) Evans, D. F. J. Chem. Soc. 1959, 2003.
SMART Version 5.625 and SAINT+ Version 6.22; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2001.
Sheldrick, G. M. SHELXTL Version 6.1; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2000.
(a) Valentini, M.; Pregosin, P. S.; Rüegger, H. Organometallics 2000, 19, 2551.
(b) Stilbs, P. Prog. NMR Spectrosc. 1987, 19, 1.
(c) Hausser, R.; Maier, G.; Noack, F. Z. Naturforsch. 1966, 21a, 1410.
(a) Moon, K.; Kaifer, A. E. J. Am. Chem. Soc. 2004, 126, 15016.
(b) Reger, D. L.; Gardinier, J. R.; Pellechia, P. J.; Smith, M. D.; Brown, K. J. Inorg. Chem. 2003, 43, 7635.
(c) Reger, D. L.; Elgin, J. D.; Pellechia, P. J.; Smith, M. D.; Simpson, B. K. Polyhedron 2009, 28, 1469.
Shannon, R. D. Acta Crystallogr. 1976, A32,751;
Note, while the ionic radius of high spin Fe(II) in a 5-coordinate environment is not given in the table, a value of 0.85 A can be calculated from both the extrapolation of the differences in values given for 4-coordination or from the average M-N bond distances of these complexes taking into account the known metal radii of Co(II), Cu(II), and Zn(II).
Borràs-Almenar, J. J.; Clemente-Juan, J. M.; Coranado, E.; Tsukerblat, B. S. J. Comput. Chem. 2001, 22, 985.
(a) O'Connor, C. J. Prog. Inorg. Chem. 1982, 29, 203.
(b) Miyasaka, H.; Clérac, R.; Campos-Fernández, C. S.; Dunbar, K. R. Inorg. Chem. 2001, 40, 1663.
(c) Marshall, S. R.; Rheingold, A. L.; Dawe, L. N.; Shum, W. W.; Kitamura, C.; Miller, J. S. Inorg. Chem. 2002, 41, 3599.
Lohr, L. L.; Miller, J. C.; Sharp, R. R. J. Chem. Phys. 1999, 111, 10148.
Makinen, M. W.; Kuo, L. C.; Yim, M. B.; Wells, G. B.; Fukuyama, J. M.; Kim, J. E. J. Am. Chem. Soc. 1985, 107, 5245.
Duran, N.; Clegg, W.; Cucurull-Sánchez, L.; Coxall, R. A.; Jiménez, H. R.; Moratal, J.-M.; Lloret, F.; González-Duarte, P. Inorg. Chem. 2000, 59, 4821.
(a) Ginsberg, A. P. Inorg. Chim. Acta 1971, 545.
(b) Ginsberg, A. P.; Martin, R. L.; Brooks, R. W.; Sherwood, R. C. Inorg. Chem. 1972, 11, 2884.
Shenoy, G. K.; Wagner, F. E.; Kalvius, G. M. In Mössbauer Isomer Shifts; Shenoy, G. K., Wagner, F. E., Eds.; North-Holland: Amsterdam, 1978; p 49.
Owen, T.; Grandjean, F.; Long, G. J.; Domasevitch, K. V.; Gerasimchuk, N. Inorg. Chem. 2008, 47, 8704, and the references given therein.
Ingalls, R. Phys. Rev. A 1964, 133, 787.
Westerheide, L.; Müller, F. K.; Than, R.; Krebs, B.; Dietrich, J.; Schindler, S. Inorg. Chem. 2001, 40, 1951.
(a) Reitmeijer, F. J.; de Graaff, R. A. G.; Reedijk, J. Inorg. Chem. 1984, 23, 151.
(b) Lee, S. C.; Holm, R. H. Inorg. Chem. 1993, 32, 4745.